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on 

Project N5ori-07856 

SURVEY 

The progress of the Group in the preceding three months is only partly summarized in 

this Quarterly Progress Report,  for the reason that much thought on the part of almost every- 

one has gone into general problems of molecular theory,  which I have been presenting in the 

advanced course mentioned in the preceding Quarterly Progress Report.    As I mentioned 

there,  the notes of that course are being prepared as Technical Report No.  3 of the Solid- 

State and Molecular Theory Group,   entitled,  "Electronic Structure of Atoms and Molecules", 

and dated February 15,   1953.    This Technical Report will go to the same distribution list as 

these Quarterly Progress Reports,  and presumably will have reached its readers before this 

Report appears.    Many members of the Group have made extremely valuable contributions to 

the preparation of the Technical Report,  which do not appear in the present Report;  in par- 

ticular,   I should like to thank Dr. Koster,   whose help with the application of group theory to 

the configuration interaction problem in molecules,  particularly in methane,  has been of 

great value. 

This course on atoms and molecules will be followed during the second half year with 

one on the structure of solids,  and its notes are being written up in the same way,  so that 

Technical Report No.  4,   on "Electronic Structure of Solids",  will appear sometime after the 

close of the term in June.    The general background which has been built up in the discussion 

of molecules will be carried over to the problem of solids.    That is,  in the first part of the 

course we shall consider one-electron solutions in a self-consistent field,  and in the second 

part shall set up determinant.il solutions formed from these one-electron orbitals,  and con- 

sider the problem of configuration interaction between them.    In considering the symmetry, 

both of one-electron orbitals and of the wave functions of the complete system,   we shall be 

concerned not only with the translational symmetry arising from the crystalline nature of the 

problem, but with rotation and reflection symmetry as well;  it is for this reason that we car- 

ried through the long discussion of molecules,  which show only the rotation and reflection I 

symmetry without the translational symmetry.    We shall propose to discuss symmetry prop- 

erties of energy bands and Wannier functions,  degeneracy of energy bands,  and so on,  mak- 

ing use as during the first term of only the minimum amount of group theory to lead to the i 

dpsired results.    In the study of configuration interaction,  major emphasis will be placed on 

magnetic problems,  excitons,   and similar questions. 

During the preceding three months,  the Group has gone ahead with the general lines i 

of research discussed in the preceding Progress Report.    The major efforts have concerned 

ferromagnetism and antiferromagnetism on the one hand,  molecular structure on the other. 

.   In the preceding Progress Report,  Dr. Statz in his contribution,  and I in the Survey, pointed 

out the Interest of the problem of the interaction cf two electrons in an empty band,  or two 
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electrons in an empty band,  or two holes in an otherwise filled band,   and showed that these 
would tend to set themselves with antiparallel spins if the band were not degenerate,  but that 
if it were degenerate,  like the d band in a ferromagnetic metal,  they could well tend to set 
themselves with parallel spins,   suggesting that further electrons or holes would also line up, 
and lead to ferromagnetism.    The energy difference between the parallel and antiparallel ori- 
entation depended on an intra-atomic exchange integral,  the same one leading to Hund's rule 
in an isolated atom.    This did not,   however,   indicate an energy difference,  or ferromagnetic 
interaction,  which remained finite at infinite internuclear separation,  for this integral must 
be multiplied by a factor measuring the probability of finding the two electrons or holes on 
the same atom,  and this factor goes to zero in the limit of infinite nuclear separation,  since 
it measures the probability of finding an ionic state,  whereas the actual ground state is 
strictly non-ionic at infinite distance.    In other words,  the correlation effect,   which keeps 
electrons out of each other's way increasingly as the atoms get far apart,  cancels the intra- 
atomic exchange effect at great enough distances. 

We have now carried this argument a good deal further,  and can present it with much 
mere mathematiral rigor,   as I show in my contribution to the present Progress Report.    The 
theory in this form is being written up for publication by the writer,  Statz,   and Koster.    A 
one-dimensional model which shows the main physical features of the real problem can be 
solved exactly,  and we see straightforwardly the way in which the correlation effect comes 
in.    We are stiii dealing with only two electrons,  or two holes,  but the arguments seem so 
general that the writer feels that we are just about ready to apply concepts which we have 
worked out for this two-electron case to setting up a general semi-quantitative theory of fer- 
romagnetism,  which should supplant both the Heisenberg and the naive energy-band or col- 
lective electron theories,  and take proper account of configuration interaction and its rela- 
tion to the correlation energy. 

Dr. Statz makes a further contribution to the theory of i verlapping bands in the pres- 
ent Report,  and Dr. Kikuchi carries further the model which he reported on in the preceding 
Report.   This model,  as we now see,  probably does not actually correspond to ferromag- 
netism,  but it seems worthwhile to carry its discussion through. 

While we feel that our knowledge of ferromagnetism is nrtvancing rapidly,  the prob- 
lem of antiferromagnetism is much more difficult.    Dr.  Pratt became convinced thaf the 
simplified one-dimensional model which he was using earlier would not lead to antiferromag- 
netism,  and we are now looking for a model much closer to the actual substances known to be 
antiferromagnetic.    We feel,  as do most of the workers in the field,  that the oxygen in such 
an amiferromagnetlc substance as MnO undoubtedly plays a very important role,  and that a 
linear molecule (MnOMn)      would presumably show antiferromagnetic properties.    It thus 
seems extremely interesting to Investigate the energy levels of such a molecule properly,  and 
Dr. Pratt Is starting such an Investigation.    The complete configuration interaction problem 
would be prohibitively difficult, but it seems possible to carry out a treatment which should 
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ample in his paper,   represents the most complicated case which has been worked out,  with 

great difficulty,  by previous methods. 

The molecular calculations are all in a very early stage,  and some changes in program 

have been made since the preceding Progress Report.    Drs.  Koster and Schweinler are going 

on with the work on water,  but this will be a task requiring a good many months.    Since the 

preceding Progress Report,  it has appeared that other work which has been carried out very 

recently elsewhere on the spherical Bessel functions,   which are needed for the calculation of 

three-center integrals,   will make it unnecessary to compute those functions here,   so that 

that part of the program has been discontinued.    Mr.  Merrifield is proceeding with the work 

on HF.  preliminary to studying (FHF)",  but it now appears that the HF case will represent a 

large enough task for the present,  and he will not go ahead with the (FHF)    case.    It is hoped 

that this problem will be taken over by another member of the Group.    Dr.  Barrett has 

started work on F,,   a problem which makes use of the same atomic wave functions.    Mr. 

Allen continues his study of KC1.  with particular attention to the polarization,   and Mr. Calien 
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give the required result,  without impossible labor.    We shall confine ourselves to the case 

where all five spins of the 3d electrons in each Mn      ion are lined up parallel,   but where the 

magnetic moments of the two Mn     ions can have various relative orientations, all the way from 
parallel (ferromagnetic configuration) to antiparallel (antiferromagnetic).    In o'.her words, 

we must find the relative energies of the configurations with different total spins.    We are 

considering not only ihe case where each Mn ion is doubly charged,   and where the oxygen 

forms an O" ion with an inert gas configuration,   but also the case where the oxygen has lost 

one of these electrons,   which is then located on one of the Mn ions,  reducing its total mag- 

netization.    This,   in other words,   is the model which has been discussed by Anderson and 

others from the point of view of superexchange,  but instead of treating it by the Heitler-Lon- 

don method,   we propose to treat the same model quantitatively by the configuration interac- 

tion method,   using properly orthogonalized molecular orbitals. 

This problem of configuration interaction,   even making the approximations which we 

have mentioned,  still is exceedingly difficult to carry out,  not on account of the number of 

interacting configurations,   which is not very large,  but on account of the problem of setting 

up the correct unperturbed functions to represent tne various orientations of the Mn ions in 

their states of maximum multiplicity,  and the wave functions of the molecule arising from 

them.    These wave functions are linear combinations of very large numbers of determinantal 

functions formed from one-electron orbitals.    In studying this problem,  Dr.  Pratt has been ; 

led to treat the problem of spin degeneracy in a new and greatly improved way,   which is the 

subject of his communication.    Some such technique as this is absolutely necessary to handle 

the complication of the MnOMn problem,  and at the same time it should lead to a great im- 

provement in our ability to handle the problem of spin degeneracy in general,  which comes 

up in almost all molecular and solid-state problems.    For instance,  the case of the 14 singlets 

arising from the spin degeneracy of 8 electrons,  which Dr.  Pratt discusses as a simple ex- 
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is going ahead with the study of the configuration interaction approach to the hydrogen mole- 
cule. 

It is becoming clearer and clearer that while a complete treatment of configuration 
interaction is a very desirable thing,  the number of interacting configurations will be so 
great,  in many cases even of simple molecules, that a complete treatment will be quite 
out of the question.    Thus,  in my Technical Report No.  3,  it is shown that a proper treat- 
ment of configuration interaction in methane,  of approximately the same degree of accuracy 
as that used by Meckler for oxygen,  would require 104 interacting configurations,  a number 
much greater than has been suspected by earlier writers on the subject.    This is clearly out 
of the question,  and our attention is turning more and more to possible methods of simplify- 
ing the configuration interaction problem by leaving cut unimportant configurations.    In my 
Technical Report, I have suggested several possible ways of doing this,  none of which can be 
really justified except by trying them out.    One is a possible treatment of the carbon-carbon 
bond in ethane,  by which enough configurations would be included so that the carbon-carbon 
bond itself would have a wave function which behaved properly as a function of C-C distance, 
but in which the hydrogens were treated only to a molecular orbital approximation.    This 
would imply that the problem was set up in terms of some sort of directed orbitals, that the 
two electrons in the bond between a carbon and a hydrogen were located in the bonding orbital 
formed from these directed orbitals, but that the two electrons in the carbon-carbon bond 
were either both in the bonding,  or both in the antibonding, type of molecular orbital.    Such 
an interaction,  which involves only two configurations, leads to proper behavior of the two # 
methyl radicals into which the molecule dissociates.    Dr.  Meckler,  who has now submitted 
his paper on oxygen for publication,  is starting this treatment of ethane,   hoping in this way 
to get a treatment of the carbon-carbon bond which may point the way to methods of investi- 
gating a single bond fairly accurately,  without having to solve the complete configuration 
problem of the whole molecule. 

Such a treatment of a single bond suggests that by using directed orbitals, one may 
perhaps be led to a simpler configuration interaction than the whole general case. For in- 
stance,  in my Technical Report, I have shown that in methane one can proceed by setting up 

< 
bonding and antibonding directed orbitals between the carbon and the various hydrogens.    One 
can then set up those particular configurations in which two electrons are located on each of 
the four bonds.    It is plausible that these may be more important configurations,  for the ac- 
tual lnternuclear distance,  than those in which some bonds have more,   some less,  than two 
electrons.    It appears that there are only 22 configurations of this type,  out of the whole 104 
of the molecule.    These configurations would not lead to the correct state of the carbon atom 
at Infinite lnternuclear distance, but would instead leave it in its so-called valence state,  but 
nevertheless such a treatment might be good enough to be of considerable value.    A similar 
treatment of ammonia involves only 13 configurations,  out of a total of 98,' and Dr. Kaplan 
has decided to undertake this problem,  in place of Sg which he originally proposed to consider. 
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The number of interacting configurations in Sg is so enormous that nothing but a simple mo- 
lecular orbital treatment would be possible, whereas with ammonia we should be able to use 
this limited configuration interaction treatment. 

It is clear that in these limited applicatioi 3 of configuration interaction we are feeling 
our way toward approximations which may be usable and yet good enough to be valuable in 
more complicated cases.    In particular,  for solids,  any complete configuration interaction 
problem is absurd to think about,  unless we can limit it either by limiting the number of el- 
ectrons out of closed shells,  as in the case of the ferromagnetic model discussed by Statz 
and the writer,  or by some method which focuses our attention on a particular bond or par- 
ticular atom and its immediate environment.    Configuration interaction proves to be very 
important in those molecular problems where it can really be treated properly,  and there is 
no reason to think that it is not equally important in solids.    Thus the sort of study which we 
are making is the only approach which seems to us at all reliable, to the question of how it 
can be handled for solids in a practicable way. 

A number of other problems are being carried along.    Mr.  Freeman has completed 
his study of the Z  's for atoms,  as determined by the Hartree method,  and is preparing to 
write this up.    Dr.  Kleiner has finished, one phase of his study of neutron scattering,  and has 
sent a Letter to the Editor of The Physical Review concerning it.    Dr.  Parmenter has finally 
abandoned the attempt to set up the energy bands in chromium,  on account of the enormous 
number of three-center integrals involved.    Mr.  White continues his study of the many- 
electron interaction by the method of Tomonaga. 

Several new students, both seniors and graduate students,  are joining the group.    Mr. 
Schrieffer and Mr. Switendick,  seniors,  are writing senior theses c n problems of atomic 
complex spectra,  working out the multiplet separations of light atoms from simple analytic 
wave functions.    Mr. Saffren,   and other graduate students,   are starting to collaborate with 
various members of the Group,  and will be reporting progress at a later time.    The plans 
for next year,  when some, of these new students will be with the Group,  as well as various 
visitors from overseas and other places,  indicate that there will be a large and very active 
group during the year. 

J. C Slater 
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1.  A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM 

In the preceding Quarterly Progress Report,  H.  Statt      has discussed a simple case 

of ferromagnetism:   that in which there are only two electrons in an empty band, or two 

holes in a filled band, the extension to the latter c.se having been supplied by G.   F    Koster- 

The question was asked,   will the lowest state of this system correspond to the electrons hav-    ' 

ing parallel spin (a triplet state), in which case we expect it to form a model for ferromag- 

netism, or to their having antiparallel spin (a singlet),  in which case the system would not be 

ferromagnetic?   The answer was straightforward in case the band was non-degenerate:   the 

singlet will lie lower, and the system will be non-magnetic-    In the case of degenerate bands, 

it was shown that the triplet state could well lie lower,  so that the system would be ferro- 

magnetic.    The analysis underlying these conclusions has now been carried further,  and put 

on a sounder basis, and will be presented here.    The conclusions are the same as before, 

but particularly in the case of overlapping bands and ferromagnetism,  we get a clearer and 

more detailed understanding of the situation.    The work is now being written up for publica- 

tion. 

As in Ref.   1, the wave function for the two-electron system is expanded in sums of 

products of Wannier functions.    Let the Wannier function corresponding to the i     energy band, 

concentrated around the atom whose vector position is at R_. to be a-(r - R_).    These Wan- r m t m 
nier functions form a complete orthogonal set, provided we use all bands i, and all atomic 

positions R    .    The function 4"(r*.,  r,) of the coordinates of the two electrons,  satisfying 

Schrodinger's equation, can then be expanded in the form 

•<Vl>"        I       V*m'"nWVKm>*j<r2-Kn>- <»'» 
i. j. m, n 

This equation is similar to Eqs. (10. 5) and (10. 10) of Ref.   1.    Here, however, in contrast to 

the treatment of Ref.   1,  we handle the symmetry or antisymmetry of the wave function by mak- 

ing appropriate postulates about the symmetry of U. .(R   , R ).    The function (1. 1) does not 

Include the spin, and we know, from general treatment of the two.-electron problem, that it 

must be a symmetric function of the coordinates r.,  r, for a singlet,  an antisymmetric func- 

tion for a singlet.    These conditions are fulfilled if the V. .'s satisfy the condition 

V*n'"m>  = tUij<«nA>' <»  2> 

where the • sign refers to the singlet, the  - to the triplet. 

We now assume, as in Ref.   1. that the Hamlltonian is given by 

H = Hj   • H2 • g12 (1.3) • 

< 
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VRm' Rn> ' «P(lK ' (Rm + Rn» Fij<Rm " Rn> • ' <1' 7> 

where the exponential factor represents the free motion of the center of mass, K being a mo- 
mentum vector associated with this free motion, and where F;.(Rm - R

n) represents the 
relative motion, depending only on R     - R , the distance between the particles.   If we sub- 
stitute (l. 7) in Eq. (1.6),  and replace R     - Rn by a single quantity R , the resulting equation 
reduces to 

1 

(A TWO ELECTRON EXAMPLE OF FERROMAGNETISM) 

where H.,  H, are one-electron Hamiltonians of the two electrons in a periodic crystalline 
field, and where g,, is the Coulomb repulsion between the two electrons (or holes).    We as- 
sume that the energy of an electron in the field given by the Hamiltonian H., in the i     energy 
band,  with a propagation constant k,  is given by 

I ^i(Rm)exp(-^    ^m*- (l4) 

m 

Then the matrix components of H. between the various Wannier functions are 

/V<?1> Hlaj^l - Rm> dTl   = 6ij «M<-Rm> (1  5) 

We can now find the matrix components of the Hamiltonian (1.3) between the various products 
of Wannier functions Included in (1. 1),  and thus set up the general equations for the U, ,*s, 
similar to Eq.  (10. 7) of Ref.   1.    These equations are 

Zfftff.) Vitm - ffs. SB) •• *,#.) Uij(Rm. Rn - Rs)]   •        I       Uki(Rm - Rr. Rn - R.) j 
s k.l.r.s 

JV<'l " *m> »j*^2 - Rn> «12Vri * Rm * V H^Z " Rn * Rs> dTldT2 {l' 6) 

' EUij^m' Rn> 

In Eq.  (1-6), we can now carry out a separation of variables into the coordinates of 
the center of mass of the two electrons, and the relative coordinates.   This separation is 
equivalent to making use of the conservation of momentum:   if we set up our function 4*, not 
in terms of the Wannier functions as in Eq. (l. 1), but in terms of Bloch functions, the sum 
of the k vectors of the two electrons will form a quantity which is conserved, only those 
states interacting with each other for which this sum has a fixed value.    Tha corresponding 
statement regarding the U's is that we may write 

: 

I 
I • 

i 

I 
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![/,<*,) exp(- iK •   Rs) F.^p - Rs)  +   ^(Rs) exp(-iK •   RJ F^ • R,)] 

•   I   exP( -i? mr * i?s» Fw(ip - a. • RS) /^ - R*P) aj*(r2) gl. 
kill• i s 

-,,<?; - Rp • Rr) a/^ + Ks) drldx2  =  EF. .(Rp) 

(1.8) 

We are interested in solving these equations for a particular value of K     Usually the lowest 
5tate,  which we are interested in,  will correspond to K = 0,  and we shall assume that this is 
the case in our further discussion.    We may then investigate the wave function relating to the 
relative coordinates, from (1.8).    We readily find that the quantity F,.(R ) has symmetry 
properties similar to those given in Eq.  (1.2): 

F.A-S ) t F. (R* ) . 
ij    P 

(19) 

For the coefficients F   (if ) associated with the case where both electrons are in the same 
band,  Sq.  (1*. 9) means that F..(R ) must be an even function of R   (that is, even under an in- 
version operation) for a singlet, odd for a triplet, as in Ref-   1,  and this immediately leads 

For the case where i and j are different in 
and when we do 

to the conclusion that F..(0) = 0 for a triplet 
Eq.  (1. 9),  however,  we have the possibility of writing F.. in terms of F. . 
so, we arrive at equations equivalent to Eq.  (10. 11) of Ref.   1 

We now wish to take simplified cases of Eq.  (18),  which are simple enough so that 
we can solve them,  and yet which are general enough so that they preserve the important 
physical features of the general equations.    In the first place, as was shown in Ref.   1, the 
largest integrals of the operator g., in Eq.  (l. 8) come when all four Wannier functions are 
on the same atom.    For the present approximate survey, we shall consider only these terms, 
disregarding all others, though those others would have to be taken into account to get a quan- 
titatively accurate solution.    We shall use the abbreviation 

/V^i> V^ g»*^?»,*I(?2,dTldT2 = (ij/g/kl) (1   10) 

Then, for the case K = 0. Eq. (1.8) reduces to the form 

I[^A>+ ^/-Rs)] Fi/%" ff«} + 6(V0) E (iJ/*/kl) Fki(V= EFij(V •(1 n) 

s M 

where in the second term of the first summation we have replaced R   by - R  .    We shall now 
B 9 

I! 

-8- 



(A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM) 

consider two cases of Eq.  (1. 11):   first t. at In which only one energy band Is of Importance, 
so that all the F. .'s can be disregarded unless i and j are both equal to a,  the Index of this 
band;  secondly, that in which two bands,  a and b,  must be considered,  so that we consider 
all cases where either i or j equals either a or b. 

We take first the case of one band, so that i = j = a     We note that the energy <f A&B) 
must be symmetrical under an inversion,  so that & (R )  =  |f ( - R ).    Then Eq.  (l. 11) re- 

&       5 91 S 
duces to 

I  2 <f a(Rs) Faa(R    - R"s)  •   (aa/g/aa) Faft(R  ) 6(R    0)  =  EF^R ) , (l. 12) 

where we remember that for the singlet the function F    (R ) is even under an inversion, aa    p 
while for a triplet it is odd.    The term (aa/g/aa) represents the repulsive interaction between 
the two electrons,  which we are neglecting unless they are on the same atom,  so that the 
relative separation R    reduces to zero.    For the triplets, this term drops out entirely, since 
F    (0) = 0 for the triplets,  and the equations are exactly as they would be for free particles. 

Sin 

For the singlets,  however, the repulsive interaction is present, and tends to keep the two el- 
ectrons apart.    Thus this repulsive interaction will tend to raise the energy of all singlet 
states,  while leaving the triplets unchanged, and we must first examine whether it can raise 
the energy of the lowest state,  which as shown in Ref.   1 is a singlet, up to the next lowest, 
which is a triplet. 

We shall discuss this problem directly from the difference equations (1. 12).    A three- 
dimensional difference equation of this type cannot be easily solved; the relaxation me "hod, 
used for the approximate solution of two- and three-dimensional differential equations when 
approximated by difference equations, is probably the best method of handling it.    The one- 
dimensional case, however, is easy to treat, and as shown in Ref.   1, this shows all the es- 
sential features of the three -dimensional problem.    Even the one-dimensional case is rather 
complicated if we have Interactions between other than nearest neighbors; that is, if    g (R ) 
is appreciable except for R   equal to the distance between nearest neighbors.    We recall, 
from Eq.  (1. 4),that a restriction to nearest neighbor interactions is another way of saying 
that the energy is a sinusoidal function of k, the propagation vector, an approximation which 
holds well for narrow bands.    We shall then set up the special case of Eq.  (l. 12) in which R\ 
is restricted to an equally spaced set of points on a line, and It   refers only to a unit dis- 

(3) placement.    Essentially this same problem was discussed by the writer and Shockley* ' in 
treating the similar problem of the exciton. 

To simplify notation, let the various lattice points be denoted by an index n.    Here 
n =  0 refers to R    = 0, positive and negative values of n to positive and negative *'» (that 
is, to the case where the first particle is to the right or left of the second), and in accordance 
with the discussion of Ref.  1, we shall impose the boundary condition that our function is to 
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(A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM) 

vanish for given limits of R ,  or of the relative coordinates; in particular,  we assume that 
the function will vanish for n = i N.    Let the one non-vanishing component of   ©    be simply 

81 

denoted as   & .    Let the F    *s be denoted by F    (n).    Then Eq.  (1. 12) becomes v a aa aa 

2 ^a[Faa(n + »> + Faa(n " l>]     = EFaa(n) if n ' ° 

1 ^a[Faa(1> + Faa( " l)]   + W^ Faa(0) * EFaa(0) ' 

We can at once solve all of Eqs   (l. 13) except that for n =  0 by the assumption 

F    (n) = sin   (N - n) if 0 > n £ N 
tttt 

F    ( - n) = + F    (n) , aa*     ' aa   ' 

i 

(114) 

where the t sign refers to singlets or triplets.    The solution (1. 14) is chosen so that it auto- 

matically satisfies the boundary conditions when n = t N.    Substitution of (1. 14) in the first 

equation of (1. 13) shows that that equation is satisfied if 

E  = 4 ^a cos a. (1. 15) 

i! 

which is what we expect from Eq.  (14),  when we remember that we are dealing with the en- 

ergy of two electrons.    We note, incidentally, that to have the energy a minimum for o  =  o 

(or for k • 0 in Eq.  (l. 4)), which is the convenient assumption to make,    fi   must be negative. 

We must now substitute in Eq.  (l. 13) for n = 0, to determine the propagation constant 

a, and hence the energy of each state.    For the triplet states, this is trivial.    We must have 

F    (0) * 0,  which demands at once sin «N = 0, o = m»/N,   where m = 1,  2,  ... N - 1, so 
that we have N - 1 triplet states.    For the singlets,  we have -4   $   cos aN sin a + (aa/g/aa) 

sin aN - 0,  or 

4 &    cot aN sin a • (aa/g/aa) . (1- 16) 

i 

: We can solve this transcendental equation by plotting the quantity - cot a N sin a as a function 

of a, and finding the values of « for which it equals -(aa/g/aa)/4 $ , which we remember is 

a positive quantity, since g is chosen to be negative. In Fig. 1-1 we show the function 

-cot aN sin a, as a function of a, for N * 4. At a = 0 the function equals - l/N. It goes through 
zero when aN = v/2, 3*/2, . . . , or in general for a = m*/2N where m is an odd integer, so' 

that it goes through zero N times for a between zero and «.   At a = w, the function equals 
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Fig.   1-1 
Function-cos aN sin a,  for N = 4 

l/N.    The function becomes infinite when a - mt/N where m  is any integer from 1 to N - 1; 
that is,  it becomes infinite at the same values of a for which we have triplet states. 

We now see that if (aa/g/aa)  =  0,  so that we have the problem of the free particles, 
we have N singlet states, corresponding to the values of a where this curve is zero.    The 
lowest singlet state, corresponding to a =  w/2N,  is the lowest state of the problem, below 
the lowest triplet, which has a =  w/N,  as is discussed in Ref.   I.    To visualize the energies, 
we remember that the energy is given by 4 & ^ cos a ,  where $   is negative,  so that *  = 0 •* a 
corresponds to the center of the Brillouin zone,   a = 1 i,  to its edges, and the energy has its 
minimum at the center of the zone, its maximum at the edges.    Thus increasing a increases 
the energy.   Now as (aa/g/aa) increases from zero, or as the repulsive effect between elec- 
trons is introduced,  we find the singlet values of a from Fig.   1 -1 by finding the intersections 
of the curve with the horizontal line at height -(aa/g/aa)/4  *   , depending on the magnitude of 
the repulsive Interaction in terms of the band width.    As this line rises,  it is clear that the 
o's of all singlet levels increase,  so that their energies rise,  a consequence of the positive 
repulsive energy.    These a's,  however,  approach the asymptotic values which give the triplet 
energies,  as the repulsive interaction is indefinitely increased;  so that no matter how great 
the repulsion, or how narrow the band width,  the lowest singlet will never rise above the low- 
est triplet.   This is in agreement with the result of Ref.   1. 

For small values of (aa/g/aa), there are N  intersections of a horizontal line with the 
curve of Fig.   1-1.    That is, there are N  singlet states, and taken together with the N - 1 
triplets,  we have 2N - 1 states in all,  which is as it must be,  since there are 2N - 1 values of 
n, between n = - N and + N, for each of which a quantity F    (n) is defined,  and there must be 
as many states as values of this quantity.    At a certain height, however,  the intersection in 
Fig.   1-1 corresponding to the largest a  value becomes lost,  and we must investigate what 
happens to this solution, though it is not the one that concerns us directly,  since it corresponds 
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to the highest singlet,  and we are principally interested in the lowest singlet.    It is interesting 
first to see for what value of (aa/g/aa) this occurs.    From what we have seen before, it comes 
when - (aa/g/aa)/4 £    =   l/N.    This has a simple meaning.    The quantity - 4 & /N is the a a i 
total band width,   - S Q    , divided by 2N, the number of lattice points plus one, or is approxi- 
mately the one-electron energy per lattice point at the top of the energy band.    Our limiting 
condition comes when the repulsive interaction (aa/g/aa) equals this band energy per lattice 
point.    We shall now show that for larger values of (aa/g/aa), this solution emerges from the 
top of the band, and becomes a higher and isolated energy level, equal in energy approximately 
to (aa/g/aa) in the limit of very high repulsive energy,  and corresponding to a wave function 
in which the two electrons are attached permanently to the same atom, never wandering through 
the lattice.    This special solution can be at once identified from Eq.  (l. 13).    In case (aa/g/aa) 
is very large compared to   / , we can almost disregard   £   in Eq.  (l   13).    Then we have a 

U A 
limiting solution in which F    (n) = 0 except for n = 0,  in which case of course F    (0) must 
be unity by normalization (it is to be noticed that we have not so far normalized our wave func- 
tions).    Eq.  (1. 13) then tells us that E = (aa/g/aa). 

The physical meaning of this special solution is clear.    In the limit of narrow bands, 
where    $   is negligible, Eq.  (l. 13) leads to no non-diagonal matrix components,  which means 
that electrons are not likely to wander from one atom to another.   In our problem of the rela- 
tive motion of the electrons, there is one lattice point,  R    = 0 or n = 0, corresponding to an 
ionic state; all the remaining 2N - 2 lattice points correspond to non-ionic states, with the 
two electrons on different atoms.   These 2N - 2 states will be degenerate with each other, and .• 
as soon as the non-diagonal matrix components   &    become different from zero, linear com- 
binations will be introduced corresponding to the wandering of electrons from one lattice point 
to another to remove this degeneracy.   The one ionic state, however,  will have a much higher 
energy, and it will remain as an isolated state until the $ 's become great enough so that 
there Is an appreciable probability of mixing ionic states with the non-ionic ones arising from 
the 2N - 2 remaining states. 

The importance of this special ionic state arises from its effect on the other states in 
the limit of narrow bands.    If our wave functions are all normalized, then the completeness 
theorem demands that the sum of the squares of the F    (n)'s.  for a given n, for all the states 

Ha 
in the band, must equal unity.    We have just seen that in the limit of narrow bands, the single 
ionic state will have F    ('•>) equal approximately to unity,  so that this means that in this limit, 
all the other states must have F    (0) approximately zero.    In other words, ail the states, 
singlets as well as triplets, must lead to a vanishing probability of ionic arrangements of two 
electrons on the same atom, in the limit of narrow bands, or infinite internuclear distance- 
This Is the origin of the correlation effect, tending to keep electrons from occupying the same 
•torn in the limit of widely separated atoms.    We can investigate this correlation effect direct- 
ly, through our exact solution for F    (0) for the various states, and we shall do this presently. 

AA 
But it is very Important that we can deduce the correlation effect as well by use of the com- 
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pleteness theorem, for this can be used in the three-dimensional case,  where we cannot get 

an exact solution of the difference equations,  just as well as in this soluble one-dimensional 

case.    The completeness relation holds equally well there,  and inspection of the difference 

equation will show that this special ionic state occurs perfectly generally,  and is not limited 

to the one-dimensional problem. 

Let us now see analytically how these results come about.    First we shall investigate 

the ionic state,  when (aa/g/aa) is great enough so that it no longer can be described in terms 

of the solution we have set up already.    In this case,  we easily find that the substitute for 

Eq.  (1. 14) is 

Faa(n) * (- l)nsinh v(N - n) , 

Faa<-n>-Faa<n>- 
(1   17) 

where we use only the + sign in the relation between F    (- n) and F    (n),  since this special 

solution occurs only for the singlets.    The energy equation,  corresponding to (l. 15), is then 

• • - 4 ^a cosh v. (I. 18) 

When we substitute in the equation for n » 0, to determine the value of  y, we find 

- 4 /a coth vN sinh "V = (aa/g/aa) . (I. 19) 

We may plot coth vN sin v as a function of Y. in a way similar to Fig.   1-1, to determine the 

value of v graphically.    When Y s 0, coth YN sinh Y equals l/N,  so that the limiting case 

- (aa/g/aa)/4^     =  l/N corresponds to Y * 0, just as it corresponds to a = ».   As (aa/g/aa) 

increases from this value,   Y increases without limit.   If N is large, the quantity coth  yN 

very rapidly approaches unity, so that Eq.  (l. 19) can be solved directly.    For large Y. Eq. 

(1. 17) shows that F    (n) decreases very rapidly with increasing n, so that F    (0) is much 

larger than any of the other values.   This verifies our earlier statement that this state is one 

in whicn practically the entire function is concentrated at R   * 0, corresponding to the ionic 

state.    Furthermore, for large Y» sinh Y and cosh Y approach each other, so that by com- 

paring (l. 19) and (>   19). we see that the energy approaches (aa/g/aa), as we previously 

stated. 

It helps one's understanding of the nature of this special state if one sees how the 

quantities F    (n) depend on n, for increasing values of the ratio - (aa/g/aa)/4^    of the re- 

pulsive interaction to the band width.   In Fig.   1-2, we show these functions, for a series of 

Increasing values of this ratio.   The actual values of F    (n) alternate in sign from one value 

of n to the next, and in the interest of clarity, this alternation is not shown, but only the 

. i 
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Fig.   1-2 

F    (n) as a function of n, for highest singlet level, 
different values of repulsive interaction. 

magnitude of the F's.    For no repulsive interaction, the curve is the simple sine curve, re- 

ducing to zero for n =  * N,  and having a maximum for n = 0.    As the repulsion increases in 

proportion to the band width, the curves become flatter, being made up of sine curves of 

longer and longer wavelength,  until finally they become straight lines, the case of an infinitely 

long wavelength, which is the limiting case a • * or  Y =  0.    Then as Y builds up,  they start 

to fall off exponentially as we go away from the origin, this falling off becoming steeper as 

the repulsion Increases,  or the band width decreases.    For infinite repulsion, or zero band 

width, the falling off is infinitely rapid,  only the case of R    = 0 giving a non-vanishing con- 

tribution.    The curves of Fig.   1-2 are of course not normalized, but are adjusted to give the 

same values for R    = 0,  in order to make a clear picture of what is going on. 

Let us next consider the values of the quantities F    (0) for the other singlet states; wc 

have seen that as the detached ionic state builds up, these other singlets will approach zero 

at R    s 0.    Wc can investigate this at once from Eq.  (l. 14).    We have already seen, from our 

discussion of Fig.   1-1, that as the repulsion increases, the values of a for the singlet states 

approach the values mt/N,  where M is an integer.    Since F    (0) * sin »N, this means that 

F    (0) approaches sin m* « 0.    In other wordr, the correlation effect on all these states is 

at once obvious.   It is not hard to set up approximate solutions for a holding for large repul- 

sions, or small band widths, so as to see just how F    (0) goes to zero with decreasing band 

width, but since our present case is not a quantitatively correct description of the actual situ- 

ation, this is hardly worthwhile.    When future three-dimensional calculations are made with 

the aim of real quantitative accuracy, it will be worthwhile Investigating the use of the com- 

pleteness relation to find the values of the F    (0)'s in detail.    It should not be hard, even in 

this case, to approximate the solution for the separated state, and to use this in finding the 

F^Oj's. 

We have now investigated the case where both electrons are in the same non-degenerate 

band, and have concluded, as in Ref.   1, that it does not lead to ferromagnetism.    Fortunately 

much of the analysis can be used again in considering the degenerate band, to which we now 

proceed.    Let us assume that there are two bands, a and b,  which must both be used in the 

expansion of the wave function.   Thus we must consider F    ,  F -, F.   , and F^; but we can 

eliminate F.    by use of Eq.  (1. 9).    Let us set up the equation similer to Eq. (1. 12) for this 

case, making the same assumption as before that the integrals involving the g's are to be 
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disregarded unless all four Wannier functions are on the same atom.    We find for the singlets 

I 2<fa(Rs) Faa(R    - Rs) * 6(1 .0) [(aa/g/aa) F^ft ) • 2(aa/g/ab) F&b(R ) 

•   (aa/g/bb) Fbb(Rp)]   =  EF&a(Rp) 

P 
(1.20) 

I   [<?a(*s>*  *b<-*.>]  Fab^p- V   +«(R;,0)[(ab/g/..)FM(5p) 
5 (1.21) 

• {(ab/g/ab) + (ab/g/ba)} Fab(Rp) •  (ab/g/bb) Fbb(Rr)]   - EFab(Rp) 

I 2<?b(Rs) Fbb(Rp - Rs)  •  6(Rp.O) [(bb/g/aa) F^fy  •  2(bb/g/ab) F^fy 

* (122) 

• (bb/g/bb) Fbb(R*p)]    = EFbb(Kp) 

and for the triplets 

I 2 *.<».) Faa(iTp - IT,) = EFM(fp) (1. 23) 
s 

I [^a(Rs) •  Sb( -Rsj Fab(Rp - Rs) • 6(Rp. 0) [(ab/g/ab) - (ab/g/baj| F^fy 

(124) 

- EFab(V 

I  2 *b(*s> Fbb(ifp " «V " "Wfy <»  25> 

The equations for the triplets are separated from each other, but those for the singlets 
are not.    Let us first inquire what can be done about this.    To see how to proceed, we must 
look a little more carefully at the* type of overlapping bands which we are likely to have.   A 
case of accidental degeneracy is so unlikely as to be rather unimportant; it is discussed by 
H. Statz In his contribution to the present Report.    The cases which are significant are those 
where, at the bottom of the band, there are two or more degenerate levels arising from crys- 
tal symmetry.   A simple example in the two-dimensional Mathieu problem has been discussed 
earlier by the writer; * ' this is the case of degeneracy arising from an atomic p   and p 
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l[^a(V * *b<" R.>] Fab(Rp " V + *(V °> [Wl/«b) • (ab/g/ba)] F^Rp) - EF^Rp) 

(127) 
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function,  and is typical of the sort <">f degeneracy which we shall really encounter in the ferro- 
magnetic metals, though of course the problem there,  arising from d-electron degeneracy in 
three dimensions, is more complicated.    In Ref   4,  it was shown that in defining the Wannier 
function in such a case,  we may if we choose consider one band to consist of the lower energy ' 
state for each point in the Brillouin zone, the other band to consist of the higher energy state 
at each point.    In such a case the resulting Wannier functions, as well as the energies as 
functions of k, show the complete symmetry of the lattice-    However, Koster* ' has pointed 
out that it is not necessary to proceed in this way, and in fact it is not always desirable.    We 
can instead set up energy surfaces which are discontinuous along certain 45   lines (in a two- 
dimensional Brillouin zone) or certain planes (in a three-dimensional case), combining the 
lower of the two energy surfaces on one side of this line with the higher one on the other, in 
such a way that the resulting energy surfaces transform into each other in the same way as 
the atomic p   and p   functions,  under the various symmetry operations of the crystal.    If we 
choose the energy bands in this way, the resulting Wannier functions also transform like p 
and p   functions, and in fact reduce to those functions in the limit of infinite interatomic dis- 
tance-    For the present purpose, this second type of treatment is more appropriate,  since it 
exhibits the degeneracy in an obvious way. 

If we suppose, then, that the band   a   corresponds to that generated by atomic p  -like 
functions, and  b  to that generated by p -like functions, we can at once draw certain conclu- 
sions about some of the matrix components on grounds of symmetry.    Thus the components 
like (ab/g/aa) contain just one factor, the function symbolized by h,  which changes sign on 
reflection in the plane y =» 0,  so that the Integrals must change sign when the sign of y is un- 
changed.   On the other hand, this merely changes the name of one of the variables oi integra- 
tion* so that it cannot change the value of the integral, which consequently must equal zero. 
The same Is true, as we see by inspection of Eqs. (1. 20), (l. 21), (l. 22), of each component 
connecting an F .  with either F     or F...    Consequently we see that (l. 20) and (1. 22) be- 
come equations for F     and F..  only, while (121) is an equation for F .  only.    Furthermore, 
since the states  a  and  b  differ only by a rotation, there will be a degeneracy between Eqs. 
(l  20) and (1. 22).    We find easily that this degeneracy is to be removed by assuming that 
Ffeb(R ) « t F__(RD)     When we insert these assumptions, Eq   (l  20) and (1. 22) reduce to 

I i £JL\) Fu(Rp - R.) • «(Rp. 0) [(aa/g/aa) t (aa/g/bb)] FM(Rp) « EF^Rp)      (1. 26) 
s 

Furthermore, Eq.  (l. 21) reduces to $.   • 
• 
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We now see that all the equations which we finally must solve are of the same form as 
that for the single band,  which we discussed earlier.    As in that case,  we may use the one- 
dimensional case as a guide in understanding the solution; a problem with p   and p -like 
functions in atoms arranged along the   z   axis would show the desired behavior.    In such a 
case, the quantities ^a(Rs) and  <?b(Rs) will be equal, so that Eqs.  (1. 26) and (l. 27) will 
have the same non-diagonal matrix components.    In discussing our solutions, let us first 
take the case where one electron is in each band,  so that we are finding F . , from Eq.  (l. 24) 
for the triplet, (l. 27) for the singlet.    We remember that for this case, no symmetry re- 
quirements are imposed on F ,   on account of the symmetry or antisymmetry of the wave 
function   4* •    The nature of the Eqs.  (1. 24) and (l. 27),  which have inversion symmetry, de- 
mands that the solutions be either symmetric or antisymmetric on inversion, and we can 
have symmetric solutions for both the singlet and triplet, so that from our earlier discussion 
we know that the lowest symmetric solution will represent the lowest energy level of the 
problem.    We now notice that the repulsive interaction in the singlet case is (ab/g/ab) + 
(ab/g/ba) and in the triplet case (ab/g/ab)  - (ab/g/ba).    Since the exchange integral (ab/g/ba) 
is positive, this means a smaller repulsive interaction in the triplet.    The main consequence 
of our study of the one-dimensional case was the result that the energy increased as the re- 
pulsive interaction increased (since this increased the value of a), so that we conclude un- 
ambiguously that of these two states, the triplet lies lower.    We cannot conclude that it is the 
lowest energy level of the problem, however, until we have examined the other singlets, 
arising from the case where both electrons are in the same state  a, to be sure that they do 
not lie even lower than this triplet. 

These other two singlets are given by Eq.  (l. 26), and correspond again to symmetric 
solutions,  with the repulsive interaction (aa/g/aa) t (aa/g/bb).    We can now see easily that 
these repulsive interactions are greater than with the solutions we have just considered. In 
which the repulsive interactions were (ab/g/ab) t (ab/g/ba).   In the first place, as we can 
see from the definitions, (aa/g/bb) = (ab/g/ba), so that the separation of levels in either 
case is the same, and the order of levels will be determined by the two repulsive Interactions 
(aa/g/aa) and (ab/g/ab).   The first of these is the interaction of a charge distributed on or- 
bital a, with itself; the second   the Interaction of a charge distributed on orbital a with an- 
other on orbital b.   It seems plausible that the second would be smaller than the first, and 
calculation in special cases shows that this is indeed the case.   Thus, if the two functions a 
and b are atomic p   and p   functions, we can find these various quantities in terms of the 
well-known F integrals.   We find that (aa/g/aa) equals F° +   4/25 F2, (ab/g/ab) equals F° - 
2/25 F , so that in fact the second Is smaller than the first In this case.    Furthermore we 
find in this special case that (aa/g/bb) • (ab/g/ba) = 3/25 F , so that the repulsive inter- 
actions for the three singlets are F° • 7/25 F2, F° •  1/25 F*. and F° •  1/25 F2; for the 
triplet, It is F    - 5/25 F .   On the basis of the magnitudes of the repulsive Interactions, we 
should certainly say In this case that the triplet state was the lowest, and that we should have 
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ferromagnetism. 
Let us now use our study of the present problem, to deepen our understanding of the 

nature of the ferromagnetic interaction in an actual ferromagnetic substance.    According to 
the naive energy band theory, the question as to whether a given system is ferromagnetic or 
not is ordinarily answered as follows.    We start with an energy band partly full of electrons, 
with equal numbers of electrons of each spin,  so that it is unmagnetized.    Then we reverse 
the spin of one electron,  and ask whether the energy increases or decreases; if it increases, 
we conclude that it is not a ferromagnetic system,  while if it decreases,  we may reasonably 
expect that further reversals of spin will still further reduce the energy,  resulting in a mag- 
netized state as that of lowest energy, or a ferromagnetic system     According to the energy 
band theory, the energy changes for two reasons when one spin is reversed.    First, there 
are additional exchange integrals between electrons of parallel spin, to be subtracted,  so 
that the energy decreases.    The leading term in these exchange integrals is an intra-atomic 
term like our quantity (ab/g/ba), which retains its value to infinite internuclear separation. 
Secondly, the one-electron or Fermi energy will increase when the spin reverses, for the 
electron will be removed from a position below the Fermi level,  and must be placed at an 
energy above the Fermi level when its spin is reversed, on account of the exclusion principle. 

This increase of Fermi energy is greater,  the broader the energy bands,  so that we 
see easily that for very broad bands ferromagnetism is impossible, according to the energy 
band theory.    At large distances, however, the increase of Fermi energy goes to zero, as 
the bands narrow,  while the exchange term remains of the same size,  arising from an intra- 
atomic effect.    Thus the naive theory would predict that any substance should be ferromag- 
netic at large internuclear distances, an absurd prediction.    The writer has pointed out 
that this absurdity is- removed when we take account of configuration interaction,  and in the 
present simple case we see just how to do this.   As the internuclear distance increases,  we 
have seen that the two electrons, rather than finding themselves on the same atom as often 
as would be predicted by the energy band theory without correlation, actually tend to avoid 
each other, and in the limit of infinite distance they are never found on the same atom,  so 
that the intra-atomic exchange integral must be multiplied by a factor,   JF b(0)J  , measuring 
the probability of finding the ionic state,  which decreases to zero with infinite interatomic 
distance-   At the actual interatomic distance in a ferromagnetic crystal, however, it seems 
not unlikely that this factor has not decreased very much as compared to its value on the 
simple energy-band theory, so that while the tendency to ferromagnetism is decreased some- 
what on account of this correlation effect, it still remains of the same order of magnitude as 
found in the energy band theory.   A similar conclusion was reached in an earlier treatment 
using a less realistic model.    ' 

If we make this modification, the energy band theory should be approximately valid. 
In particular, the increase in Fermi energy when we magnetize the system remains approxi- • 
mately as in that theory,  so that the conclusion that ferromagnetism is impossible with broad 
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bands remains unchanged.    For a trivial reason,  however, this increase in Fermi energy has 

not appeared in the present calculations-    The reason is that we are dealing with only two 

electrons,  which must be in the bottom of the Fermi band in the lowest energy level of the 

system,  which alone we have considered;  and we are dealing with at least a two-fold degener- 

ate band.    Thus,  with our two bands a and b, the two electrons can have their spins parallel, 

and yet one can be in the lowest state of band a, the other in the lowest state of band b, so 

that in this special case it does not increase the Fermi energy to set their spins parallel. 

This is a special case arising from our two-electron problem, and does not in any way affect 

the validity of the general argument. 
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2.  A SIMPLE MODEL OF FERROMAGNETISM 

In the last Progress Report, * 'we have asked the question,  If two electrons in acci- 
dentally degenerate bands of different width will or will not align their spins?   In all practi- 
cal cases the bottoms of the two bands will not coincide and will have a finite energy differ- 
ence.    One can predict without any calculation that both electrons will move in the lower 
lying band and will set their spins antiparallel.    If we consider the artificial case in which 
the two bottoms of the bands coincide then the question whether the triplet or the singlet has 
lower energy depends essentially on tne difference in width of the two bands.    The mathe- 
matical problem is identical to that solving an atomic multiplet problem.    Using this analogy 
we have two orbitals with different one-electron energies.    The question is now:   do the el- 
ectrons rather prefer to stay in the same orbitals with opposite spins or is the gain in "ex- 
change" energy large enough to overcome the energy loss to bring one electron with reversed 
spin in the higher orbital?   When the orbitals have the same one-electron energies we know 
from Hund's rule that the electrons will set their spins parallel even if all configurations are 
taken into account.    We therefore expect to find the triplet state lying lowest only for those 
orbitals which have small differences in energy.    In the mathematical description the differ - 
ence in energy of the two orbitals comes from the different structure of the two bands.    One 
can see this without any calculation by considering the expansion of the wave function (de- 

scribing the movement of the two electrons in the crystal) in products of Bloch functions.    In 
our picture the orbital energies are essentially represented by the weighted sums over Bloch- 
function energies.    If one band is now considerably broader then all Bloch functions have 
higher energies and the corresponding orbital has a higher energy too.    We may therefore 
expect to have orbitals of approximately the same energy only when the two bands have the 
same width.    Such cases of accidental degeneracy are never found in real crystals.    The 4s 
band in the iron group elements,  for example,  is always much broader than the 3d bands. 
So we expect,  at least in the two-electron model,  to have only ferromagnetic alignment of 
spins in bands which are degenerate because of the crystalline symmetry.    The detailed de- 
scription of this case the reader may find in the publication already mentioned. 

Reference 
1. H. Statz,  Quarterly Progress Report,  Solid-State and Molecular Theory Group,   M.I. T. , 

January 15,   1953,  p.  23. 

H.  Statz 
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3.  THEORY OF FERROMAGNETISM 

The work reported in the previous Progress Report has been mostly finished.    The 

free energy was minimized with respect to parameters and the Curie temperature T~. was 

shown to be determined by the following equation 

exp(2j7kTc)  - w/(<- - 2) (3- 1) 

where J' plays the role of the exchange integral of Heisenberg's model and is defined by 

K,  K-5,   K54>  Q,  and J are defined in the previous Progress Report,     ' and 2w is the coordi- 

nation number of the lattice. 

Kec ^ an atomic quantity and does not depend on the internuclear distance,  but the 

Coulomb integral   K   and the exchange integral   J   become small as the internuclear distance 

becomes large.    For large internuclear distances,   Eq.  (3. 2) can be reduced to 

J'   = .1  -  MK54 + Q)2/K55 (3. 3) 

which has close similarity to the equation derived by Slater*  ' 

J»  = J - 2WR
2/K55 . (3.4) 

WR   in Eq. (3. 4) and (K&4 • Q)   in Eq. (3. 3) are both related to the width of the band,  increas- 

ing as the internuclear distance becomes smaller.   This similarity gives Indirect support of 

the present treatment. 

As is seen from Eq. (3.1),  it is necessary and sufficient that J' is positive in order for 

the ferromagnetic state to appear.   As an example, the case of a simple cubic lattice was cal- 

culated with a Gaussian orbital function at a lattice point.   This atomic orbital was orthogo- 

nalized and the integrals Q,   K,  J,  etc. were calculated using these OAO's.    Putting these 

numbers in Eq. (3. 2),  it was shown that the ferromagnetic state does not appear for any inter- 

nuclear distance.   This result confirms the conclusion derived by Slater, Statz and Koster. * ' 

Though this treatment does not give results which qualitatively contradict those of other 

authors, this treatment has unclarifled assumptions in its foundation.   These shortcomings 

are to be investigated at some future time. 

-21- 



±r-v 

(THEORY OF FERROMAGNETISM) 
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3. J.  C.  Slater,   Quarterly Progress Report,   Solid-State and Molecular Theory Group,   M. I.T., 
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4.  A SPIN OPERATOR METHOD 

Let us assume that we are dealing with a 2N electron problem and are interested in 

applying the methods of configuration interaction to the system in order to find the ground 

state.    One of the first problems in such an investigation is that of spin degeneracy.    For a 

set of 2N orbitals and 2N electrons it is possible to form many states of a giver multiplicity 

by associating either a or p spin with the collection of orbitals in a variety of ways.    The 

present discussion will be restricted to the consideration of the singlet states.    Under the 

conditions cited above one can construct 

(2N)i 
N!(N + 1)! 

orthogonal singlet states. 

One means of setting up all of the singlets is the valence-bond method which leads to 

the correct number of linearly independent singlets,  but the states so obtained are not or- 

thogonal.    Another method of constructing all of the singlets is by using the branching dia- 

gram,  a pictorial description of adding the spin angular momentum of electrons one by one 

which shows for any number of electrons how many states of various multiplicities there are 

and what the parentage of the state is.    The method of the branching diagram will be used in 

the following discussion. 

A spin operator method is given here for setting UP all of the orthogonal singlets for 

a 2N electron problem.    The five orthogonal singlets corresponding to a six electron system 

are analyzed in some detail and from this analysis a spin operator O is derived which when 

operating on a single determinant creates an eigenfunction of S .    AH of the singlets for the 

six electron problem are written down in terms of this operator as well as the fourteen or- 

thogonal singlets for the eight electron problem.    The operator O is quite general and has 

very useful properties.    In the latter part of this report some of the applications of this op- 

erator to the problem of configuration interaction are discussed. 

In Fig. 4-1 the branching diagram for a six-electron system is given.   This diagram 

not only shows how many states of a given multiplicity there are for n electrons, but by ap- 

plying the methods of vector addition of angular momentum, the branching diagram also 

shows how the states are actually constructed.   In Figs.  4-la through 4-le the five possible 

ways of obtaining a singlet state for the six-electron problem are illustrated.   Let us con- 

sider in some detail the state described in Fig. 4-la.   The branching diagram tells us that 

this state results from the combination of two three-electron systems,  say  A and B,  each 

of which are in a state of S « 3/2.    Let us order the six orbitals for this problem •,,  •,. 

• v *4. +c «"<• • *•    These orbitals are assumed to be orthonormal and distinct.    Let fj, $2. 

and •, and three electrons make up set A and *4, f5. and f6 and three electrons comprise 

set B.   The singlet in Fig. 4-la can be expressed as 
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i 

Y- I—I    1    X—f 

Fig.  4-la 

V 

in 

fi 

0        I 1      1       «        5        t 

Fig.  4-lb 

i 
KVTYTN 

t 

I    J    «    »    • 

Fig.  4-lc 

2 

Fig. 4-ld Fig. 4-le 

+ ,(S«0) « CQ*A(S - 3/2,  Ms =    3/2) •   *B(S » 3/2.  Mg - -3/2) 

• C^A(S = 3/2,   Ms -     1/2) •   *B(S = 3/2. Mg - - 1/2) 

.,•  C2*A(S « 3/2.   Mg - - 1/2) •   •gtS = 3/2,   Mg = • 1/2) 

• Cj^tS - 3/2.   Mg « - 3/2) •   • B(S « 3/2.  Mg = • 3/2) 

The states represented by +A(S.  Mg) and +B(S, Mg) are 

•1(1)O<1)*1(2)Q(2) •1<3M3) | 

•A(S « 3/2.  Mg = 3/2) 

•B(S * 3/2.  Ms = - 3/2) 

•2(l)o(l)*2(2)o(2)f2(3)o(3) 

•3(l)o(l)t3(2)a(2)*3(3)a(3) 

•4(4)«4)t4(5)«5)*4(6)P(6) 

•5(4)«4)f5<5)P<5)*5(5)P(6) 

V4>«4> V5>*5) 46(6)P(6) 

|oaa|. 

WW 

(4.1) 

(4.2) 

(4.3) 

i 
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•A(S = 3/2,   Ms =    1/2) = -i— [ipaQl*  l«»Pa| + |aaft] (4.4) 

• B(S = 3/2. Mg = -1/2) = -^— [|Ppcl •  IPapl + laPpl] 

•A(S - 3/2,   Mg • -1/2) = —U: TlaPP) +  |pap| • ippa/l 

•B(S = 3/2,   Mg * +1/2) = —5— [|aap| +  |0aa| • |oPa|] 

•A(S = 3/2.   Mg = -3/2) = Ipppl 

^(S = 3/2.   Mg = +3/2) = laaal 

4.5) 

4.6) 

4.7) 

4.8) 

4.9) 

All determinants are assumed to be normalized. 
The expression   • .(S = 3/2,  Mg)  •  •ofS = 3/2,   - Mg) involves the combination of the 

determinants which make up the states.    The "product" of two determinants is taken to mean 

loPal   •    ippa! 

• j(l)°0) 

•20)P(1) 

•30W1) 

•5(1)P(1) 

• j(6)a(6) 

•2(6)?(6) 

•3(6)0(6) 

•4(6)P(6) 

•5(6)P(6) 

•6(6M6) 

(4. 10) 

In general the "product" of an n x n determinant and an m x m determinant is an (m + n) 
(m • n) determinant.    We also note that the order must be preserved,  i. e. lapal   • ippal   is 
not equal to ippd   • bPal.    It is to be borne in mind that the • (S,  Mg) are normalized states 
of definite multiplicity.    The coefficients C, in (4. 1) are the transformation amplitudes for 
the vector addition of angular momentum,  and sometimes called the Clebsch-Gordon coeffi- 
cients.    They may be obtained in this case from the general expression for combining two 
systems of spin S to form a resultant singlet.    This is 

•S S-Ms 

*s=o *     I    ^        •A<S-MS) * Vs- -"s* 
Mg-S 

(4.11) 

Let us now look into the question of forming the various $.   _(S, Mg) states.   +A(S 
3/2,  Mg = 1/2) is obtained by the step-down operator acting on +A(S = 3/2,  Mg = 3/2) and 
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•B(S = 3/2,  Mg = - 1/2) is gotten by the step-up operator acting on $B(S = 3/2,  M„ = - 3/2). 

Thus except for a constant we have 

•A(S = 3/2,   Mg = 1/2)  =  S'A *A(S - 3/2,   Mg « 3/2) 

•B(S = 3/2.   Mg=-l/2)  = Sg^S = 3/2,   Mg=-3/2) 

where S.   « ST • Si • Si and si =» si • st * st.    Writing this out we get 

S.laaol s     Ipaal   +   |aPa|   •   laafUl (4. 12} 

SglpppM    [lappl   +   |Pap|   •  IpPoj] {«. 13) 

In order to have normalized states,  we must multiply the right-hand side of both (4. 12) and 
(4. 13) by (3)*   '    which is the number of ways of reversing one spin in set A or B taken to 

the - 1/2 power.    We can write the second term in (4. 1) except for the factor of - 1 as 

3 *A(S = 3/2,   Mg = 3/2) •   ^(S = 3/2,  Mg = - 3/2) (4. 14) 

The third term in (4. 1) may be written as 

*   B       *A(S = 3/2. Mg = 3/2) • *B(S = 3/2,  Mg » - 3/2) (4. 15) 

The factor of 3 in the denominator is the product of the number of ways of reversing two 

spins in set A taken to the 1/2 power and the number of ways of reversing two spins in B 

taken to the 1/2 power.   The factor of 4 in the denominator arises because in the expansion 

of (S^S^)2 we encounter equivalent terms of the type SjS^S^Sg   • S^S^S^S^ + S^SjS^Sj + 

SJSJS, S4>    Thus if there are M spin reversals in set A and in set B,  we must divide out 

the permutations among set A and set B as in the case above. 
The fourth term in (4. 1) may be written 

A*^      *A(S = 3/2.  Mg = 3/2) • *B(S = 3/2,  Mg «  - 3/2) (4. 16) 

Here there is just one way of reversing all the spins in A and in B. The factor of 36 in the 

denominator is necessary because there are 3! ways of expressing the reversals in A, i. e., 
S1S2S3'  S2S1S3'  etc*  and 3!  ways in B. 
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We can now combine (4. 14),  (4. 15),  and (4. 16) and write the singlet (4. 1) as 

Vs - °) - {»;4>° - jK& + TZ(SA4>2 - i&i8*)3} 
(4. 17) 

•   tA(S = 3/2.   Mg = 3/2)  •  +B{S = 3/2,   Mg = - 3/2) . 

We must multiply the right-hand side of (4. 17) by 1/2 in order that the final state will be 
normalized. 

We have now expressed the singlet shown in Fig. 4-la as the result of an operator act- 
ing on the "product" of  tA(S = 3/2,  Mg * 3/2) and *B(S = 3/2,  Mg » - 3/2).    We seek now to 
generalize this operator to the 2N electron case.   That is given a 2N electron system,  a 
collection of N electrons and N orbitals will be termed as set A,  and the remaining N elec- 
trons and N orbitals denoted by set B.    We wish to form the 2N electron-orbital singlet 
state by combining sets A and B each of which is to be in a state of maximum multiplicity, 
i.e.,  S.   D   = N/2.    Our composite state will be 

A, 15 

*(S * 0)  = Oj ^A(S = £.   Mg = £) *B(S » £.   Mg = - £)] (4. 18) 

Denoting the number of spin reversals in A or B by M,  the general form of the operator, 
which will be represented by O,, is 

£     (-l)M      <N-ffL.(g;sy« (4.19) 
M=0 N!M! TNTI      A  B * 

where 

' SA  " SIA 
+ S2A 

+ + X 

SB38^*8^* *4B <4-20> 

The (- 1)M is the Clebsch-Gordon coefficient.   The factor (N - M)! /N! M! is 

r(N-M)!M!l^/2  .   [(N-M)!M!|   + llZ .    1    . J_ (4 21) 
L N! J I N! J M!      M! l ' 

The first factor in (4.21) is the number of ways of making M   reversals in set A,  which con- 
tains N elements, taken to the - i/l power.   The second factor is the number of ways of 
making M reversals of spin in set B taken to the - 1/2 power.   The third factor divides out 
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equivalent permutations in set A,  as explained above.    The fourth factor does the same in 
set B. 

Therefore,  we have found an operator O, which,  when acting on the "product" of two 
N electron systems each in a state of maximum S and one with Mg * S and the other with 
M„ = - S,  produces a composite state of 2N electrons which is a singlet.    It turns out that 
the present operator O. is not general enough to be a really powerful tool.    In the course of 
events a number of modifications will suggest themselves. 

Let us now investigate the creation of the remaining singlets for the six-electron 
problem.   The reader is referred to Pigs. 4-lb, 4-lc,  4-ld, and 4-le for a pictorial de- 
scription of the structure of these states.    In Fig. 4-lb our resultant singlet is the "product" 
of a singlet state made up of the first four orbitals and four electrons,  and the singlet made 
from the last two orbitals and electrons.   Eq. (4. 11) shows that if we combine two systems 
each of which is in a singlet state to form a resultant singlet, that the composite state is 
merely the "product" of ^(S = 0) and $2(S 3 0).    Our plan is, therefore, to generate the two 
singlets inferred from Fig. 4-lb and to take their "product" to get the final state.    The sin- 
glet formed from the first four orbitals and four electrons is the result of combining two 
states •»(S = 1,   Mg = 1) and $B(S » 1,  Mg • - 1).    The singlet formed from the last two or- 
bitals and two electrons is the result of combining two states 4>,,(S = l/2,  M_ = 1/2) and 
•_,(S = 1/2,  M„ = - 1/2).    Thus the six-electron singlet for Fig. 4-lb is simply 

+ 2(S = 0)  = O! |uappt   *   0[ }Q« (4. 22) 

which when expanded is 

+ 2(S « 0)  = —L_   Lappi    - i jiapapl   +   lappaj    •   iPaap   +  IpoPalJ 

(4.23) 

Ippaojl   '  fapl -   |Pa|]   • 

For the purpose of illustration let us write out O. and O*..    For O. N  = 2,  and for O'. N » 1. 
Thus from (4. 19) we get 

+ s-s's^ • S-S-S& • s-s-sjs^}] 

.-«• Since SJS. commute for i / j 

O,   « -^   [l - j   {S[S; * S-Sj • S'sJ  • S-Sj} • S'S'S^;] (4.24) 
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and O'j is 

o,i = -jf [x - •;•!] <4' »> 

The singlet in Fig. 4-lc is constructed in the same manner as   'VAS = 0) only now the 
first two orbitals and two electrons are combined to form a singlet,  and the last four orbitals 
and four electrons are combined to form a singlet.    The composite singlet is just the "prod- 
uct" of these singlets.    Hence 

4"3(S = 0)  =  O'j lap!  '   OjlaaPft (4.26) 

«J»3(S = 0)  = —L.      floPl    -  ipall   •    flaapfl    - i /fcipapl   +  lappaJ 
^6 (4.27) 

+  IPapal    +   Ipaapl]   +   Ippaal] 

Theorem I, which is proved in Appendix I,  and which states that different paths on the branch- 
ing diagram terminating at the same destination lead to orthogonal states,  shows us that + , 
and +3 are indeed orthogonal. 

The singlet formed in Pig. 4-Id is gotten by taking the "product" of three singlets 
each made up of two orbitals and two electrons.    Thus 

+ 4(S = 0)  =  oS^loPI   •   O^IQPJ    •   0(i5)lQft (4.28) 

where O; ' is 

0ii)=-7f    [l-SiX+l] C4.29) 

+ 4(S = 0)   = —l—   [(laPl   -   iPol)  •   (|ap|   -   Ipal)  •   (lapl   -   |pQ|j] (4.30) 

Let us now consider the last singlet, that shown in Fig. 4-le.    The singlets formed 
so far have been either the "product" of subsidiary singlets formed by the application of O., 
or in the case if Fig. 4-la,  a total singlet formed directly by the use of Q..    The state shown 
in 4-le is the result of combining two states each made up of three orbitals and three elec- 
trons and both in a state of S  *  1/2.    Our plan is now to find out how to use O. so that it can 
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It is of interest to note that this state is one of the familiar valence-bond singlets.    In valence- 
bond language one would describe the state as having a bond between $, and $2>   a bond be- 
tween $, and +.,  and a bond between $,   and •,.    The expanded form of this state is 
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•        <        i 

Fig.   4-2a 

/ 

£-7 "J 1-"* 
Fig.  4-2b 

operate on a determinant maH» up of an odd number of electrons; therefore,  not in a state of 
Ms = 0.    We want the result of operating with O. on,  for example, laafM to be a state of 
4>(S = 1/2).   The formation of a state of +(S = 1/2) from three electrons may be accomplished 
in two different ways as indicated by the branching diagram.  Fig. 4-1.    The two possible 
states are shown in Figs. 4-2a and 4-2b.   The state illustrated in 4-2a is the result of the 
combination of a singlet formed by the first two orbitals and two electrons and a state $(S = 
l/2) formed from the third orbital and ui electron.   That is 

4»2a - —y   [lap    -  Ipoll    *  lal 

+2a = °1,Qpl  '   °1W   = {°1'**} 

(4.31) 
lal 

The state shown in 4-2b is the result of the combination of a state +(S = 1) formed from the 
first two electrons,  and a state +(S = 1/2) formed from the third orbital and an electron. 
The method of creating such a s*ate by the vector addition of angular momentum is well 
known and the result is 

|a| «KS x 1/2,   Mg = 1/2)  = —~   |aa|   •   10 ^    tap   +  Ipal] 

We can factor this state as follows 

•MS = 1/2 •  Mg - 1/2)  » -~ ||al •   (|ap|   -  IpaJ) +  (|o'|«l* P» -  lp*lal'al)} 

This defines a new way of writing a "product",  for example 

lafll • (lap)   -   Ipal} -|pp|    =  lapapppt    - lappappl 

(4. 32) 

(4. 33) 

(4.34) 

We can generate the state   4<(S = 1/2.  Mg = 1/2) by the application of an operator which is 

(1 - S~S*) • (1 - S[S*) (4. 35) 

• 

• • 

i; 
i 
• 
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which operates on laaPI.    We have 

(1  - S~Sj)|aapl   •   laaPI   - laPal 

(1 - SJSJJIQQW   »   laopj   - Ipaed 

Therefore,  except for the proper normalization constant 

[(1  - S'Sj)  +   (1  -SJSjjllaaft    =   2|aapt   -   laPal    -  iPaal (4.36) 

Thus the state I|I(S * 1/2,  Mg = 1/2) can be created by use of O. since (4. 36) can be written 

+ (S * 1/2.   Mg = • 1/2)  =  —L=    [oj2, 3)  •  o[1, 3)J  laaPI 
v 3 

» —j=   h laapl -   lapal   -  iPaalj 
(4. 37) 

*(S = 1/2,   Ms * - 1/2)  = —l-   [o[A' 5> •  0<4' 6)]  | 
73 

app) 

*        £ lappl -   ipoPI    - Ippal] 
(4. 38) 

Having found the two states 4<(S = 1/2,   Mg * 1 1/2) corresponding to those involved in the 
formation of the singlet in 4*c(S = 0) Fig.  4-le,   we can create the composite six-electron sin- 
glet as 

*5(S - 0)  = Oj [>KS = 1/2,   Ms * 1/2)  •  4<(S = 1/2.   Ms = - l/2)| (4. 39) 

When written out, this is 

°i r +5(S = 0)   • — UlaaPaPpt   -   2|aoPPaPl   -   2 laaPPpaJ   -   2 |aPaaPpl 

• laPapaPl    •  |aPappa|    -   2 iPaaaPPl   + iPaapaPl     + IpaaPPaj] 

(4. 40) 

where the orbitals associated with a spin comprise set   A   and the orbitals associated with 
spin p comprise set B.    For example the first determinant in (4. 40) has   •., •,,  and  ^4 m 

A and •,,  •j,  and ^ in   B. 
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With expression (4. 40) we have completed the task of writing down all of the orthogonal 

singlets for the six-electron case with the help of the operator O..    Now we wish to general- 

ize this operator so that it can be used for a wider variety of situations.    Eqs.  (4. 37),   (4. 38) 

and (4. 40) show that it is sometimes necessary to use more than one definition of sets   A and 

B.    It would be much more convenient to have a form of Oj which would automatically operate 

on all possible choices for sets   A   and   B.    We can easily modify O. to do this and the gen- 

eralized form of O.  will be written as O.    It is 

O = !      T   fi •     V    (-DM(N -M)i   r(s- s*  ,M       ( •     -  ,M1   . 
(N* 1)1/2     f   I       M?1 N!M! "W (VBi     I 

(4.41) 

TT    (s*  s"  s"   s*    • s"  s?  s*   s"   )] 

where the sum over i is the sum over all different divisions of the orbitals •. to $2N ^nl° two 

groups of N orbitals.    O is to operate on a determinant with total M„ equal to zero.    The 

rules for applying O to determinants with total M~ not zero will be given in a later section. 

The properties of O will now be written down and the proofs of these statements is given in 

the various appendices. 

I. O is hermetian. 

II. O commutes with S . 

III. O commutes with the Hamiltonian H. 

IV. O2 equals (N • I)1/2  {n(l • ^l/20. (l) 

V. O commutes with the antisymmetrizing operator A. 

We are now in a position to illustrate how O operates on a determinant.    Consider 

for example O operating on laPaPl.    First,  since O commutes with the antisymmetrizing op- 

erator,  we can write OlaPaPl as AO •jOMl)* (2)P(2)4>3(3)a(3)*4(4)p(4) where   O   now oper- 

ates on a spin-product function.    We can divide our four orbitals •.,  $2, 4>3.  and $4 into two 

groups in three different ways •., $2  - •j' ^4? *i' ^3 " •j' +4I *l*4 " *Z'*y   Let us tirst con" 
sider the 

7}    (s| s; s"  s*    • s: s* sj  s'k   ) 
iA'*R      WW        VAi    Bi    Bi 

part of   O  operating on •1(1)Q(1) +2(Z)fi(2) +3(3)a(3) 4>4(4)P(4).   Suppose we take the division' 

+.42  - *3'*4   and ^t +. and <>, comprise set A,  and $3 and 4>4 make up set B.    Then we have 
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[SISlS2S2S3S3S4S4 *  SIS!S2S2S3S3SiS4] V1 > a<l> *2(2) W2) *3(3) Q(3) V4) W4)    (4'42) 

This is clearly zero.    Hence this choice of dividing our four orbitals into two groups yields 
nothing.    Similarly the choice • ., $4  - • ,, •, gives nothing.    For the selection • ., •,   - 

^2' *4 we nave 

[sfos^S'S^S^ •  S^SJS^S^S;] *1(l)Q(l)*2(2)p(2)*3(3)a(3)4»4(4)p(4) 

(4.43) 
= •1(l)Q(l)«2(2)p(2)4»3(3)a(3)^4(4)P(4) . 

Thus when operating on a spin product function with the   "   operator,  we get zero for all 
i 

choices of i except one,   which leaves the spin product function invariant.    Let us now ex- 

amine the factor    ksAiSjj.)M + (SA^BI)*^ '    The term ^SAiSBt)M gives zero for all M  since 
in this example we have associated a spin with all orbitals in set A.    Thus we see that O 
effectively reduces to 

°  = "73   ^    " ^<S^ +  S^4 +  "^  +  ^  +  SiS^S4] 

which is the same as (4.24) if we interchange the 2's and 3's in that expression.    One should 
note that we would have gotten the same result had we associated  P spin with all orbitals in 
A.    This is as it should be for the assignment of spin to set   A   cr   B   is entirely arbitrary. 

Using our new operator   O   let us look back at the five singlets we have set up for the 
six-electron problem.   That originally given in (4. 17) is just 

«^(S = 0)  =  Oiaaapppi (4.44) 

Here O reduces to just the original operator.   4*2(S = 0) given in (4. 22) is 

+2(S * 0)  = OIQQPPI   •   Olopl (4.45) 

+3(S • 0) given in (4. 26) is 
I 

*3(S = 0)  = Olopi   •   OltappJ (4. 46) 

*MS = 0) given in (4. 28) is ! 

+4(S = 0)  =  Olapl   •   Olapl  •   Olapl (4.47) 
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In the case of 4*c(S = 0) we encounter operands,  i. e. ,laa0| or |a80l,  with M„ < 0 as in (4. 37) 
and (4. 38).    If we operate onlaa.pi with O,   taking N to be 1 and letting the sum over  i range 
over all possibilities of dividing the three orbitals into two groups with one orbital per group 
and excluding the remaining orbital,  then the expanded form of   O   Is 

°  = ~7l (I " {^  +  S1S2})(S1S1S2S2  +  S1SIS2S2} 

+ -i- (1 -  -[sjS*  •  S+S^HS^S'S*   +  S^sJSjSJ) (4.48) 

• _L_ (i . js's; • s*s-})(s*s-s;s* + s-s^s") 

As a result of operating on |aaPI this gives 

OloaPI = —L.   hiaafU   -   lafiaj   - |Paa|] 

This is indeed a state of S * 1/2,  Mc = 1/2,  however,  it is not properlv normalized.    We 
- 1/2 must multiply by 3     'to effect normalization.    Let us derive this extra coefficient and set 

down the rules for the operation of O on any spin-product function with M_ 4 0. 
Suppose O operates on a spin-product function with xa spins and yB spins and let us 

assume x is greater than y.    First, the constant N in O is to be taken as equal to y.    We 
have x - y excess o spins, hence ML » (x - y)/2.   In the sum over i in the operator O the 
number of choices of i that will give a non-vanishing result is the number of ways of choos- 
ing  y electrons out of the collection of x electrons, i. e. 

n « x! /(x - y)J y! (4. 49) 

Operation with  O  on this spin-product function will produce n states with S = (x - y)/2 and 
Mg » (x - y)/2.   Thus i 

O • spin-product » t|»   -f +, + • 4"    • f l       c n 
» 

each of the • . being normalized.   We have (4v 4*,) •  1.  («!»,. 40 *——.   Thus 1 *     l *      J       N • 1 
I | 

(•.t) - £ (4^.40 • 2   I (+4.) • 
l i>j J 

. n(l • 2—±\ y       N+ 1 
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T           n-lT1/2 
Therefore,  if we multiply   O   by   n(l + ) we will produce a normalized resultant 

L N + 1 J 
state.    We can modify the form of   O  given in (4.41) so that it can operate on any spin prod- 
uct function.   That is 

°' ,/ar'      •,.„•/' ? [' * Mf,t-'0NM!-'"! KV * <W (N* 1)1/Z [n(l +~4)J i M«l I     - I     • 
(4.50) 

nk   (s* s; s' s*   * s: s* sj s"   j| 
'Aj'   Bt      JAt 

JAt  
KBl 

KBi 
}Ai 

iA{ 
KB{ 

KBi J 

This will be taken to be the final form of the operator O.    We can write down ^5(S = 0) di- 
rectly as 

«J»5(S = 0)   =  O [o laapl •  Olappll (4. 51) 

Before passing on to applications of the operator   O  other than the creation of the 
orthogonal singlets for an n electron problem,  the beauty of this operator may be further 
Illustrated by writing down the fourteen orthogonal singlets for the eight-electron problem. 
It Is to be recalled that the singlets for the six-electron problem were found by partitioning 
the six orbitals in the various ways suggested by the branching diagram.    The construction 
of this diagram is not necessary in general and we shall write down the singlets for the eight- 
electron case without recourse to it.    The fourteen orthonormal singlets for the eight-elec- 
tron problem are: 

+j(S = 0)   = Olap|  •   OlaPI   •   Olapl  •  |ap< (4. 52) 

4-2(S = 0)   = Olapi  •   OlaaaPPpI (4. S3) 

<|»3(S * 0)  » OlGQQpPpi  •   Olapl (4.54) 

•4(S = 0)   = Olaaaappppi (4.55) 

<I»5(S = 0)  . OlaPl"   laapPl      •   Olopl (4.56) 

4>6(S > 0)  - Olapi-  Olapl   •   O laappi (4.57) 

4^(S > 0)  « O laappi*   Olapl  •   Olapl (4.58) 

+8(S = 0)  > OlnaPpI*   Olaappi (4.59) 

+9(S = 0)  = O jplaaappl-   Olapp)] (4.60) 
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4»10(S = 0) «  0J0|QQpi  •   Olaopppil (4-61) 

+ U(S = 0) =  ojoiaapal  •   Olpappi] (4.62) 

+ 12(S = 0) =  O[O|QQQPI   •   OlaPPPl] (4.63) 

+ 13(S = 0) =  obl«aPI   •    OlapPll    •   Olapl (4.64) 

*14(S = 0) = Ofapl   •   o[oloapl   •   O loPPll (4.65) 

Let us now turn from the consideration of how to set up the singlet states and investi- 
gate some of the aspects of a configuration interaction calculation.    The determination of the 
expectation value of H with respect to a particular state will be considered first.    Suppose we 
wish to find the expectation value of H with respect to the six-electron singlet given in (4.44) 
i.e..  O. 

(4- H «|i)  = [bloaoPPPt   '    IHI   •   OlaaQppql 

= rOA(aaaPPP)IHIOA(aoapppjj 

- JA02A(2aflppp)IHI(aQappp)| (4.66) 

=       «/N +  1   [AO(aaaPPP)IH1(aaaPPP)j 

<4|H|i|i)   = 2AO(aoappp)|H|(aaoppp) 

The spatial orbitals in the spin-product function (aaappp) are assumed to be orthonormal.    In 
the expansion of AO(aaaPPP) the only terms which will make non-zero contributions to the 
matrix element are those for which a given electron is assigned the same spin on both sides 
of the matrix element.    Therefore,  we need only consider those terms in the expansion which 
lead to  a(l)o(2)a(3)p(4)P(5)P(6).    Let us write the antisymmetrizing operator as 

A=    I   (- 1)PPV (4.67) 
P 

Due to the orthogonality of the spatial orbitals in the spin-product function,  the only spatial 
coordinate permutations in   A   that will give rise to non-vanishing integrals are the Pq's 
which effect a single interchange.    When   O   operates on (aaaPPP),  all those values of   M   in 
O   greater than one cause two or more spin interchanges between sets   A   and   B.    Therefore, 
in order to match spins on both sides of  H   we will need a permutation from   A   which is the 
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product of at least two interchanges of spin and space coordinates.    This will,  therefore, 

lead to a zero contribution due to the spatial orthogonality.    Hence the only terms that give 

contributions from the operator   O   are those from   M   values of zero or one.    For M = 0. 

we will get non-vanishing integrals from all possible interchanges of a single pair of spatial 

coordinates within set   A   or within set   B.    For M = 1 in   O   the ;erms arising from the op- 

eration of   O  on the spin-product are all the possible single spin interchanges between sets 

A   and   B.    Therefore,  in order to match spins for a non-zero integral we will need those 

permutations in   A   which put the spins back in place.    But,  these permutations involve the 

interchange of a single pair of spatial coordinates between sets   A   and   B   and will therefore 

give rise to exchange integrals.    Let us now write down (+IHl4»). 

»•»•> - {[i - i     i *l*A - i     i %^ 
JA    * r *A " ' JB 

3 6 
(4.68) + I      Z        I     p? k   1    (V1)a(1)*2(2)Q(2,*3(3)a(3)V4)P(4) 

JA = lkB = 4 

• 5(5)P(5)*6(6)p(6)) IHI   (^(1)0(1)^(2)0(2) *6(6)p(6)J . 

This expression may seem complicated out the reader will also note that this matrix element 

is taken with respect to a singlet state which is a linear combination of twenty determinants. 

This leads to the direct product of twenty determinants and contributions from 180 non-zero 

cross products. 

This general procedure for treating matrix elements can be extended to non-diagonal 

matrix elements and can be generalized to systems with a rather large number of electrons. 

The further development of this spin operator method with special emphasis on configuration 

interaction is now underway. This method is being applied to a configuration interaction in- 

vestigation of the 

model used by Anderson and others on super exchange as an explanation of anti-ferromagnetism. 

It is hoped that the spin operator method will simplify this problem so that a more rigorous 

solution can be carried through. 
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Appendix I 

Theorem I 

Different paths on the branching diagram terminating at the same destination lead to 

orthogonal states. 

Proof 

It is assumed that all spatial orbitals are orthonormal. A one-to-one correspondence 

exists K«»w»»n o Ho»«>rniinant Q and spin-product function p and it is D = Ap where A is the 

antisymmetrizing operator. If two spin-product functions composed of the same set of spa- 

tial orbitals differ in the assignment of spin to these spatial orbitals, then the spin-product 

functions, or the determinants corresponding to them, are orthogonal. It is understood that 

if two states of the same multiplicity are orthogonal, then the orthogonality is independent of 

the M„ quantum number of the states. Having made these preliminary remarks, let us pro- 

ceed. 

The first case in the branching diagram where one encounters two different paths 

leading to the same end-point is for three electrons as shown in Figs.  4-2a and 4-2b.    The 

two states are 

+2a = -y= {laPal - IpttQl}    =    A     j"(apa)   _  (paa)J 
V 2 V 2 

4<2b  =  -i=   J2|oapi    -  |apa|    -   ipoal}   =  -A, ^(aap)   .  (apa)   .  (paajj 

where (*PoaP . . . ) will in general denote a spin product function. «l»,    and +2D 
are orthogonal. 

Let us now consider an arbitrary x-electron terminal point on the branching diagram 

corresponding to an arbitrary multiplicity, say S. We shall assume that all of the different 

paths leading to this terminal point correspond to orthogonal states of multiplicity S. It will 

be shown that all of the states arising from the combination of an additional electron with the 

various states corresponding to a given terminal point are orthogonal. It will also be shown 

that any two (x • 1)-electron states of the same multiplicity which arise from the combination 

of the x • 1 electron with x-electron states of different multiplicities are orthogonal. 

Consider the addition of the x • 1 electron to the i     state corresponding to the x- 

electron terminal point of multiplicity S which results in an x + 1 electron state of S • 1/2 

and Mg = S + l/2.    The composite state is 

^(S •  !/2,   Mg = S +  1/2)  = + {(S.  Mg = S)   •   *(S = l/2,   Mg = 1/2) 
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where •(S = 1/2,  MQ = 1/2) is just •   , ,(x • l)a(x • 1).    Now •. is equal to A-   operating on 

some linear combination of x-electron spin-product functions wher<; A    antisymmetrizes a 

function of x coordinates.   4* ,(S * l/2.  S + 1/2) is equal to A      . operating on that same linear 

combination of spin-product functions each spin-product being multiplied by 4>   . ,(x • 1) 

a(x + 1).    Consider any   4" (S + 1/2,  S + 1/2) for j  j i.    This is A      . operating on the linear 

combination of spin-product functions corresponding to   $ (S,  S),  each spin-product being 

multiplied by •      .(x + l)a(x + 1). + (S, S) has been assumed orthogonal to "MS, S).    There- 

fore,   "MS + 1/2,  S + 1/2) is orthogonal to 4» (S + 1/2,  S + 1/2) for the orthogonality of two 

linear combinations of x-electron spin-product functions is not changed by multiplying by 

•'   . .(x • l)o(x + I) and being operated on by A        .. 

Now consider the addition of the x • 1 electron to the i     state corresponding to the 

x-electron terminal point at multiplicity S and which results in an x • 1 electron state 

*t(S - 1/2, Mg = S - 1/2).    We have 

^(S - 1/2,  Ms = S - 1/2)  =   Cj^tS.  S)*(l/2,   - 1/2) + C2*.(S,  S - l)*(l/2,   l/2) 

Consider any other    ^.{S - l/2, S - l/2) obtained by adding the x + 1 electron to • (S, Mg). 

We hav« 

^(S - 1/2.  S - 1/2)  = Cj^S,  S)4>(l/2.   - 1/2)  <   C2^(S.  S - l)*(l/2.   1/2) 

Since •,(S, S) is orthogonal to •^S, S) and 4» (S, S - 1) is orthogonal to •AS, S - 1),  we have 

that i'jflS - 1'2, S - 1/2) is orthogonal to  "MS - l/>., S - l/2) by the same arguments given 

above. 

Therefore, it has been shown that all of the states arising from the combination of an 

additional electron with the various states corresponding to a given terminal point are or- 

thogonal. 

Suppose now that we have two x • 1 electron states of the same multiplicity which 

arise from the combination of the x + 1st electron with x-electron states of different multi- 

plicities.   Two x-eleciron states of different multiplicities are orthogonal.   Therefore, by 

proceeding in the same manner as above, it is easily shown that the two x • 1 electron states 

are orthogonal. 

Therefore, the theorem is proved. 
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Appendix II 

Theorem II 

The spin operator   O  given in (4. 50) commutes with S . 

Proof 

The operator S may be expressed as 

S2 = const. + £ pf. (A4. 1) 

i>j 

The commutation of S   and   O  is clearly a question oi the commutation of     Z-   P;,   and   O. 
a i>i    lJ 

It will be established that P . commutes with   O  for arbitrary s and t and therefore, that 
2 O"   (2) S   commutes with   O.    It has been shown that the following properties hold for P ..     ' 

SK s pst< <A4- 2> 

SsPst  =  PstS; tA4. 3) 

<SX)M Pft  =  PK^M tA4.4) j 

^tSt"SsS;)Pst=Pst(StSt"SsS;> <A45) 

^>K\<X-  PsVStSXSk> **'» 

We will speak here about, the operation of O on a spin-proa jet function as this allows one to 
treat the electrons as being distinguishable which is convenient. We can break down the sum 
over 1 in the operator O into two cases: (1) All choices of i for which both s and t are in 
the same group, i. e., A or B. (2) All of those choices of i for which s and t are in differ- 
ent groups, i. e. , s in A and t in B.    Let us consider case (1).    For (A4. 5) we have 

(Ss Si  St+ St"  > ^t = PsVSs   Ss  St  St   > SA  *A XA lA      St SX    SA  SA  XA  lA 

The expression (ST Sn )     consists of all possible M-tuples, i. e. 
Ai Bi 

S"      S"        --- S"        S+      S+        --- S+ 

xlAt 
X2A. xMAt 

ylBj y2Bi 
yMBt 
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If neither S"    nor S."   appear in a given M-tuple, then that M-tuple commutes with pf,.   If 
just S"      appears, then 

8Ai 

(S"        — S"      — S" S+       -- S+        ) Pa. 
X1A1 

sAt 
xMAi    ylBt 

yMBj      sx 

= PsVSx      — St    — Sx       Sy      — Sy        } sx   xlAt 
lAi 

xMAt 
ylBt 

yMBl 

Therefore, the sum of the two M-tuples, one with just S~      and the other with ST     in place 
<T i      <X i of S.     but otherwise identical, commutes with P ,.    Hence P , commutes with the sum of s^. * at st 

all possible M-tuples which contain either S,      or Sf     but not both at the same time.    If both 
SjA   and Sf.   appear in an M-tuple, then P°, commutes with that M-tuple.   Therefore, it fol- 
lows that P°*t commutes with all 0> in which both s and t are in the same group. 

Let us now consider case (2).    We can easily show that 

{ss S» st < > K = KM st s» s. > 8A 8A XB *B     st st   *A lA *B *B 

Therefore, 

(Ss  Ss  St' St     + St+ St  Ss  Ss   } P?t = KMs  SS   St  St     + St  St  Ss  Ss   > 8A SA XB lB        lA lA *B SB     st st   8A *A lB lB        lA lA SB SB 

As in case (1) we can examine all of the M-tuples which appear in the expansion of O, those 
where neither s nor t occur, those where one or the other occur, and those where both s 
and t appear.   In quite the same way as in case (l) it can be shown that P     commutes with 
the collection of all possible M-tuples. 

Therefore, in this fashion one can show that P. commutes with  O  which implies 
2 that S   commutes with O 
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Appendix III 

Theorem 111 

The spin operator   O   is hermetian. 

Proof 

Every term in  O  appears symmetrically with its hermetian conjugate-    Therefore, 
O is hermetian. 

Theorem IV 

The spin operator commutes with the Hamiltonain H. 

Proof 

This is a matter of restricting ourselves to spin-free Hamiltonians. 

Theorem V 

(3) 

Proof 

The spin operator   O  square is (N + l)1/2 (n(l • ILJLl)].1/2   O. 
I N + 1 J 

It will be shown first that O    = const.  O     The value of the constant will be determined 

later.    We shall consider an N electron problem and the effect of O   operating on a single 

N x N determinant DQ, the generalization of O   operating on any linear combination of N  x N 

determinants being trivial. 

Let ODQ be written as 

ODQ = 'C0D0 + Cl{Dl1+D21 + — ^X1} 

+ C2{Dl
2 + 02

2 + D3
2.- + ^-il} f + C   D 

th where in D. ', j refers to the number of reversals in set A or B and k denotes the k     de- 

terminant with j reversals.    Let us now order these determinants such that 

D11 = P?A1BD0'   —        Diz=PXAXBD0 

n 2 s P°      p°       D      n2 = p        p        D     ul        rlAlB^2A2Bu0'    UZ       ^lAlB^ZASB^O 

and so forth. 
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Let us consider O Dn term by term.    The first term is just CnODft.    The second term 
may be written 

0~   0" 

l°{f 
°<P?A1B+P?UB+- + PXAXB H 

In Appendix II it was shown that any P     commutes with O.    Therefore, the second term can 

be expressed as 

>l{" C'<P?A!B+P7A2B+— * PXAXB/ °°( 

We know that OD» is an eigenfunction of S   which is 

S2 = const    +   Y   pf 

Thus 

We can write    £   P . as 
i>j    lJ 

Z   P°j (OD0)  =  const.  OD0 

i>j 

y p^ 
1   P^A* 

JA>kA >*" 
i PU B"B 

B"B 1 k    A b JAKB 

Since P,   w    and P,   .     commute with   O  and since they leave Dft invariant,  we have 

I pJAk <«V = const- ^o 
JAkB 

But, the second term in O DQ is iust 

I     P 

JAkB 
JAkB 

ODf 

,    and is, therefore, a constant times ODQ. 
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The third term can be written as 

L C*'JBJ>P^ ,]<*>„ 

However,  we see from 

zpU 
:-JAkB 

a 

'A"B 
OD0 = const.  ODQ 

that 

I *u 
T2 

JAkB 
A"B 

UA*B SAlB -I 
"Vll     P 

Hence, the third term in O DQ is just a constant times ODQ.    Proceeding in this manner it is 
clear that 

Now Jet 

We have 

O DQ = const.  ODQ 

ODi-^i 

(+j. *{) = (OD., OD^ = (02D„  D{) = const.  (OD^  D.) *  1 

But. 

Therefore, 

and 

so 

* T-   D. + orthogonal D's . 

const.   (N * 1>" l/z {n(l • ^-j-)}" 1/J (D,. D,> • 1 

&»••>">• IT*}"*) const. 

o2« ^•D,/2{«(i*^1/1]o. 

. 

1 
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Appendix IV 

Theorem VI 

The spin operator O commutes with the antisymmetrizing operator A. 

Proof 

The antisymmetrizing operator   A   can be written as 

A=     I    <-1)PPV 
P 

where P^ is a permutation of the spatial coordinates and P   is a permutation of the spin co- 
ordinates.    Any spatial permutation operator clearly commutes with O.    Any spin permuta- 
tion operator can be written as a product of P. .'s.    But, any P.. commutes with   O.    There- 
fore,  any spin permutation operator commutes with O.    Hence every permutation in  A   com- 
mutes with   O   which implies that   A   commutes with   O. 

References 
1. n is defined in (4. 49). 

2. P. Dirac, Quantum Mechanics (Oxford,   1947) p    222. 

3. See Ref.   I. 

G.  W.  Pratt,  Jr. 
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5.  THE WATER MOLECULE 

The method being used in the evaluation of integrals involving hydrogen wave functions 

demands the expansion of the hydrogen Is wave function about the oxygen nucleus in terms of 

Legendre polynomials.    This expansion is found by differentiating the equation for e        /r\ 

given on Page 51 of the last Quarterly Progress Report,   with respect to k.    The expansion is 

written 

-kr! 

£ (2n + l)Pn(cose)Qn(kr. ka) 
n 

where the notation is the same r,s in the previous Progress Report;  a being the O-H distance. 

The a   's (multiplied by r) have been tabulated as a function of a and r. 

r =  0(. 1) 1.2(.2) 4.0(.5) 7(1) 12 

a =   1.4.   1.5,   1.6,   1.8.   2.0,   2.2.   2.6.   3.0.   4.0.   and 5.0 

k =   1.   2 

n »  0.   1 

Calculations will be made for n up to 5. 

We have completed calculation of the hydrogen-oxygen overlap integrals for the values 

of a mentioned above,  as well as the necessary kinetic energy integrals.    The calculation of 

various inter-electronic interaction integrals has been programmed for I. B.M.  machines. 

As yet the program has not been tested. 

As was mentioned in the previous Progress Report (Page 13) calculations on the OH 

molecule are being carried out simultaneously with those for water.    The ground state has 

j]", ,y symmetry.    The configurations considered will be listed in a table similar to that of the 

previous Report.   Here s is the oxygen Is function,  o- is the oxygen 2s,  p+,  p ,  p_ are the 

three oxygen 2p functions with m 1,   0,   - 1 with respect to the internuclear axis.    The hy- 

drogen Is made orthogonal to s, a and p   we denote by h. 

Table 5 -1 

State Coefficient P <* Ko P  P P+« P+P p_o p_P    ha hp Sa sp o"a a* 

*1 I 2 3 4 5 6 7 8 9 

*2 1 2 3 4 5 6 7 8 9 

+ 3 1 2 3 4 5 6 7 8 9 

+4 i/yi 1 2 3 4 5 6 7 8 9 

-1//Z 1 2 3 4 5 6 7 8 9 

y5 Z/v^ 1 2 3 4         5 6 7 8 9 

- l/Jb 1 2 3 4 5 6 7 8 9 

-1/76 1 2 3 4 5 6 7 8 9 

-  • 
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(THE WATER MOLECULE) 

In Table 5-1 the valence bond state is t . and the state which goes into the atomic ground state 

at infinite separation is    v3/2 4"4 • 1/2 4V 

G.  F.   Koster,   H.  C.  Schweinler 
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6. SPHERICAL BESSEL FUNCTIONS OF HALF INTEGRAL ORDER AND 
IMAGINARY ARGUMENT 

Calculations of the spherical Bessel functions has been discontinued.    The reason for 
this is the very recent publication of a table of these functions.'  '   We have also learned from 
a private communication of M.  P. Barnett that he has completed a more extensive table of 
these functions.    Dr. Barnett has kindly offered to send us his tables on I. B- M. punched 
cards. 

Reference 
). C. W. Jones,  A Short Table of the Bessel Functions (Cambridge University Press.  Cam- 

bridge,   195Z}  

F. J. Corbat6, G.  F. Kcster,  H. C. Schweinler 

1 
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7. CONFIGURATION INTERACTION APPLIED TO THE HYDROGEN MOLECULE 

The addition of a configuration of the form 

a  (l)a(l)     a  (l)B(l) 

ou(2)a(2)     <ruU)p(2) 

with suitable coefficient, to the function 

crg(l)a(l)      og(l)p(l) 

og(2)a(2)      <Xg(2)B(2) 

improves the energy at all internuclear distances,  and allows the energy to go to the right 
value at infinity by removing polar states introduced by the use of molecular orbitals.    This 
process has of course been carried out for the hydrogen molecule using L. C. A. O. 's,  and the 
results are well known.    The same procedure is being carried through using M. O. 's slightly 
more realistic than the L. C. A. O. *s,   the solutions of a Hortree equation. 

Coulson*  'approximated the a   function by the expression 

<rg-Ne 
-0.75X 

(1 + a»i    + bX) 

where  X and p are the elliptic coordinates 

r   + r. ra"rb 

Minimization of the energy 

E        >  5 E_ 
°«    (°y °g) 

carried out at R • 1.4 a. u. gives the best values of a and b (for the value of R chosen). 
Coulson found the function to be 

CT     « 0.83247 e"0,75X(l + 0. 21948H
2 - . 079575X) 

and the corresponding binding energy to be 3. 535 ev.   The observed binding energy is 4.72 ev. 
Using this a   I have set up the Hartree equation 

lvl-± -i- *i • vl L r»       rh      R        J «• (7.1) 

In which V is the average potential energy duo to the other electron. 

• 

> 

! 
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(CONFIGURATION INTERACTION APPLIED TO THE HYDROGEN MOLECULJ2) 

V(,)=T^/">'7TI dT. 

- 

The lowest solution of (1) is of course a    itself.    The next lowest solution,  having a nodal 
- &X* Z plane bisecting the molecular axis,  can be approximated by o~    = Np e      \\ + C\L   + dK. . . ) 

adjusting c,  d,  and  6 to minimize the energy in Eq.  (7. 1). 
So far I have determined the average field V,  and am now refinding Coulson's value of 

energy, to check my calculation.   This energy is of course one of the two main diagonal ele- 
ments in the configuration interaction.    There still remains the task of finding the best solu- 
tion with the symmetry ar ,  of Eq. (7. 1),  and of evaluating the other three matrix elements 
in the configuration interaction. 

Reference 
1. C. A. Coulson.  Proc. Cambridge Phil. Soc.  34,  204 (1938). 

E. Callen 
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8. NUCLEAR ELECTRIC QUADRUPOLE INTERACTION IN THE KC1 MOLECULE 

Work on the KC1 molecule is continuing in the direction outlined in the previous Prog- 
ress Report.    Attention has been directed toward setting up the determinantal wave function 
for the molecule.    The molecular orbitals to be used in the determinant are linear combina- 
tions of atomic orbitals and the procedure for choosing the coefficients follows that given oy 
Roothaan.     '   Polarization is included by appropriate distortion of the K    and Cl   atomic or- 
bitals.    Several methods of doing this are being studied.    In particular the form: 

+ =*n*m('+rV> 
where 

^nim  = unP*r*urDed one-electron atomic function 

r  = distance from nucleus to electron 

v  = variation parameter 

Y ,    • surface spherical harmonic • •*—•£=-     A-J -J- P|, (cos 8)e 
* 1/2*      j      2        (*   + m )• J 

is being investigated. 

Reference 
1. C. C. J. Roothaan, Revs.  Modern Phys. 23,  69 (1951). 

L. C. Allen 
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9. CONFIGURATION INTERACTION IN THE HYDROGEN FLUORIDE MOLECULE 

The numerical calculations required for the configuration interaction treatment of the 

hydrogen fluoride molecule described in the last Progress Report are being carried out. 

These calculations were recently set back several weeks by the discovery of a number of 

numerical errors in the calculated coefficients of the expansion of the hydrogen Is orbital 

about the fluorine nucleus. 

The calculation of the energy at the experimental equilibrium H-F distance is expected 

to be completed shortly,   and the complete set of results should be available by the time of 

the next Progress Report. 

R. E. Merrifield 

-52- 

£ 



1 
(1) 10. CONFIGURATION INTERACTION FOR THE FLUORINE MOLECULE 

The method of configuration Interaction is being applied to F, in order to study its 
(Z) energy levels and wave functions.   The procedure being used is outlined below.    Slater1 ' has 

discussed some aspects of the problem in more detail than is given here. 

One-electron molecular orbitals are formed by making linear combinations of the 

atomic orbitals for the two atoms.   The atomic orbitals being used are the Is,  is,  2p ,  2p , 

and 2p_.   The subscripts +,  o,   - denote • I,  0,   - 1 units of orbital angular momentum about 

the molecular axis.   The space parts of the orbitals are made up as symmetrical or antlsym- 

metrical combinations of two corresponding atomic orbitals on the two atoms plus small 

amounts of the other orbitals in order to make the molecular orbitals orthogonal.   Actually 

the simple symmetrical and antisymmetrical combinations are orthogonal except within two 

small groups.   These groups are the symmetrical combinations made of Is,  2s,  and 2p   func- 

tions and the antisymmetrical combinations made of Is,  2s,  and 2p   functions.    Orthogonal 

combinations are formed in these two groups by a Schmidt orthogonalization process.    In the 

symmetrical (or antisymmetrical) group the molecular orbital made of Is functions is taken 

as the first combination.    A second combination is formed from the 2s functions and small 

amounts of the Is functions in such a way as to be orthogonal to the first combination.   The 

third combination Is formed from the 2p   functions and small amounts of the Is and 2s func- o 
tions in such a way as to make this combination orthogonal to the first two. 

These orthogonal molecular orbitals are labeled in the following manner.    Odd num- 

bered orbitals will be the product of a space function and an a spin function: even numbered 

orbitals,  of a space function and a P spin function.    The numbers corresponding to the spec* 

parts of the orbitals are associated with the type of atomic orbital which is most important in 

the various molecular orbitals.    Molecular orbitals 1 and 2 are associated with the Is    + Is. 

combination;   3 and 4,   Is    - Is, ;  5 and 6,  2s   + 2s, ;  7 and 8,  2s    - 2s. ;   9 and 10,  2p     + 

2p+bJ   11 and 12,   2p+a - 2p+bj   13 and 14,  2pQa + 2pob;   15 and 16,  2pQa - 2pob»   17 and 18. 

2p     + 2p_. j   19 and 20,  2p_    - 2p . .    The subscripts a and b designate the two atoms of the 

molecule. 

The configurations which will be considered In the present treatment will be only those 

In which molecular orbitals 1-8, formed from the Is and 2s atomic functions,  aie always 

filled.    It Is being assumed that orbitals 9-20 lie enough higher In energy than orbitals 1-8 

that the Interaction between these two sets of orbitals can be neglected.   The number of elec- 

trons In the molecule Is 18,   sc that all but two orbitals are filled.   The number of configura- 

tions to be considered then Is 66.   The wave function for a configuration Is the determinantal 

function which makes an antisymmetrical wave function from the 18 orbitals of the configura- 

tion.   For simplicity the configurations will be designated by the symbol (I, j),  where I and 

j are the two orbitals not Included In the configuration. 

The number of configurations which must be considered can be further reduced by con- 

sidering symmetry properties.   Only wave functions of a given symmetry will have matrix 

elements or react with each other.   In some cases It will be necessary to form linear combina 
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(CONFIGURATION INTERACTION FOR THE FLUORINE MOLECULE) 

tions of configurations in order to have functions of a given symmetry.    The ground state wave 

function is known to have    T    symmetry. * '   The  £ signifies that such a function has zero 

orbital angular momentum about the molecular axis.    The superscript  1  signifies that the 

function is a singlet spin state.    The superscript + indicates that the function goes into itself 

when the coordinates of all electrons are reflected in a plane passing through the axis of the 

molecule.    And the subscript g indicates that the function goes into itself when the coordinates 

of all electrons are reflected in the midpoint of the molecule. 

The number of states having    £    symmetry is only 4.    These states are given in 

Table 10-1.    Each row of the table represents a state.    For a state each number in the row is 

the coefficient of the configuration at the head of its column.    The coefficients are chosen so 

that each state is normalized if the configurations are normalized. 

Table 10-1 

Table of lT* States 

State No. (13,   14) (15.   16) (9.   18) (10.   17) (11,   20) (12.   19) 

1 1 0 0 0 0 0 

I 0 1 0 0 0 0 

3 

4 

0 

0 

0 

0 

i/yi 
0 0 

0 0 

Work is now proceeding on calculation of the matrix elements of energy between the 

various states.    These matrix elements can be expressed in terms of one- and two-eieciron 

integrals involving the various atomic orbitals on the two atoms.    Hartree-Fock atomic or- 

bitals^  ' will be used In evaluating these integrals. 

References 

1. The author is the holder of a Lilly Postdoctoral Fellowship from the National Research 
Council. 

2. J. C. Slater.  Technical Report No.   3.  Solid-State and Molecular Theory Group,  M.I.T.. 
February 15,   1953.   pp.   124-141.   especially pp.   140-141. 

3. G.  Herzberg,   Spectra of Diatomic Molecules,   2nd Edition (D.  Van Nostrand,   New York) 
1950. p. srr.  

4. F.   W.  Brown,   Phys.  Rev.  44,   214 (1933). 

J.  H. Barrett 
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11. THE CARBON -- CARBON BOND IN ETHANE 

The investigation just begun on the ethane molecule is in no sense as complete a job 

as some of the other molecular studies of this Group.    It is to be a quantitative test of the 

prevalent idea of independence of bonds in molecules,   in particular the covalent carbor.-car- 

bon bond.   There seems to be a valid concept of a carbon-carbon bond which appears with 

distinctive energy and internuclcar distance in different molecules,  the differences being in 

the complexes attached onto the "outside" of the carbon atoms.    In ethane,   each carbon is 

part of a methyl group,  an equilateral triangle of hydrogen atoms with the carbon at the apex 

of the tetrahedron.    The complete ethane molecule has the tetrahedrons apex to apex. 

The ground state spatial configuration is most likely the one in which the two hydrogen 

triangles are at angle of 60   to each other.    Their superposition would appear as a six-pointed 

star and this arrangement is called "staggered".   The "eclipsed" arrangement in which there 

are three colinear pairs of hydrogen atoms probably lies higher in energy than the staggered. 

We intend to treat both geometric configurations and we shall indicate the proposed extent of 

the calculation with the case of staggered ethane.    The electronic configurations to be dis- 

cussed are those suggested by Professor Slater in a Technical Report of this Group. *  ' 

Electrons shall be assigned to molecular orbitals formed as linear combinations of 

atomic orbitals.    The atomic orbitals to be ased are the 2s and Zp on the carbons and the Is 

on the hydrogens,  a total of 14 space orbitals with 14 electrons to be assigned.    (Consider the 

carbon Is functions as strictly atomic and filled.)   The symmetry orbitals to be formed will 

be ones of definite parity and proper behavior under a 120    rotation about the carbon-carbon 

axis.    There is another type of symmetry operation,   that of reflection in any of the three 

axial planes containing the perpendicular bisectors of the hydrogen triangles and this type of 

operation is to be included in forming the ground state as a totally symmetiic singlet state. 

From each hydrogen group there can be formed a combination which transforms into 

itself multiplied by e      '     under the 120    rotation,   a combination which is multiplied by 

e" v '    and one which is transformed precisely into itself.    Let these functions be denoted by 

h ,  h ,  and h ,  respectively.    The p   orbitals of the carbons are to be combined with the h 's 

to yield two gerade and two ungerade molecular orbitals.    For each parity one orbital can be 

considered bonding and one anti-bonding.    That is,   the bonding orbital will have the larger 

charge concentration between the carbon and the hydrogens in the methyl complex.    We shall 

fill the bonding g orbital and the bonding u orbital.    Similarly for the p_ and h_ combinations. 

This takes care of 8 electrons. 

The h   orbitals and the 2s and 2p   carbon orbitals are to be combined.    There will be o ro 
three g and three u molecular orbitals.    Two of each parity will be mainly 2s and h   again to 

be separated into bonding and anti-bonding insofar as carbon-hydrogen interaction is con- 

cerned.    Fill the bonding g and the bonding u leavtng two electrons to be distributed among 

the two remaining molecular orbitals, both mainly 2p ,  one g and one u.    At this point we 

shall allow configuration interaction.    Both electrons can go Into the g or bi-lh can go into 

the u.    These two configurations can Interact and must interact to allow the proper dissocia- 
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(THE CARBON -- CARBON BOND IN ETHANE) 

tion of the carbon-cirbon bond. 

This is limited configuration interaction so that the coefficients In the linear combina- 

tions of atomic orbitals must be energetically optimum. There is one independent variable 

associated with the two g combinations of the p and h orbitals and one independent variable 

associated with the u combinations. (The - orbitals make use of the same orthogonalization 

procedure.) There are three independent variables associated with the g combinations of the 

h , 2s, and 2p orbitals and three for the u combinations. The ground state energy, result- 

ing from the interaction of two configurations, is to be minimized by the choice of these eight 

variables. 

Reference 

1.  J.  C.  Sl?.»er.  Tec hr.ica! Report Mo.   3.  Solid -Plate and Molecular Theory Group.   M. I.T. 
February 15,   1953. 

A.  Meckler 

Errata 

In the October 15,   1952 Progress Report there appeared a sligiil?y wrong formula for 

the dissociation energy,  and consequently,  the table of molecular parameters was in error. 

The corrections are: 

D    •  A  *  a V5   - Li 
O V   u 4u 

-A 
Table 4-1 

Parameter Experimental Calculated 

Ro 2.28 2.255 

3r Do 

u>e(cm"  ) 

-.3735 

1580.4 

-.3660 

1514.3 

Ro 2.32 2. 30 

*-g 
Do 

we(cm" ) 

-.2527 

1432.7 

-.2051 

1272.9 

li 
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12.   LIMITED CONFIGURATION INTERACTION TREATMENT OF THE NH3 MOLECULE 

Work on the So molecule mentioned in the last Progress Report has ceased because it 

was felt that the extremely large amount of calculation necessary to complete a reasonably 

plausible molecular orbital treatment of the molecule was not warranted   in view of the very 

'.imited significance of such a model. 

An investigation of the ground state of the NH, molecule has been started.    From the 

3003 determinants wave functions obtained by using Is,   2s,  and 2p one-electron functions 

for the nitrogen atom,  and Is functions for each of the i.ydrogen atoms,   and always keeping 

the Is nitrogen state filled,   98 molecular wave functions can be formed which are completely 

symmetric under the group of operations defined by the atomic nuclei (C,  ) and which are 

singlets.   The ground state of NH, is of this type (denoted by    A.). 

It is clearly not practicable to do a complete configuration interaction between these 

98 configurations.    Some relatively small number of more important ones must be selected 

and it is the purpose of the present project to carry out the configuration interaction with a 

selection of this nature.    The final results will thus be a test of the method of selection. 

For ease in computation it is desirable to build up the necessary determinants from 

orthogonal one-electron functions.    However just this choice makes the selection of a small 

number of configurations difficult since previous work* '   ' indicates that a large number of 

configurations built up in this manner are necessary for a good description of the ground 

state of a molecule.    The alternative method of using non-orthogonal one-electron functions 

makes the selection of a small number of important configurations simple and this method 
(3) has been exploited by several authors.     '   However,  the good results obtained from these 

calculations are rendered suspect by an improper treatment of non-orthogonality and the 

evaluation of many integrals from experimental information and the authors themselves are 

the first to admit that the rigorous application of their method is not feasible. 
(4) 

A plausible method of selection,  suggested by Slater,     ' which will be used in our 

calculation is based on the observation that the molecular orbitals for a molecule such as 

NH, can be qualitatively divided into three groups:   one group of three in which the charge is 

concentrated between the hydrogens and the nitrogen,  representing bonding;  a second group 

of three in which there is a node between the hydrogens and the nitrogen,  representing anti- 

bonding; and a third group of on'     hich is not directly concerned in the bonding.   One way of 

representing these functions is as the equivalent orbitals of Lennard-Jones. * '  The molecu- 

lar orbital state,  which is the best one-determinant wave function composed of orthogonal 

one-electron functions at internuclear distances usually found in molecules,  consists in fill- 

ing group* one and three completely and leaving group two empty.   The proposed method of 

selection consists in always filling set three but allowing one or two of the electrons in one, 

two,  or three of the "bonding" orbitals to be excited to the corresponding "antibonding" or- 

bitals.   However we always keep two electrons in each "bond".   The treatment thus proposes 

that it is not likely for one "bond" to be lacking an electron while another "bond" has an ex- 

cess electron.   The final result is 13 configurations with   Aj symmetry.   This limited selec- 
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tion of configurations is a great improvement over the molecular orbital state because it can 

reduce to a non-ionized state of the nitrogen atom at infinite separation.    This should have the 

effect of improving the surface of energy versus internuclear separations in the region of 

separations greater than the equilibrium distances,   a region where the molecular orbital so- 

lution is notoriously poor. 

The matrix elements of the 13x13 secular equation are now being set up.    It is plan- 

ned to evaluate the various two-electron integrals occurring in these matrix elements by the 

machine methods of Koster and Schweinler.'  ' 

References 

1. J. C.  Slater.  J. Chem.  Phys. ^9,   220 (1951). 

2. A.  Mecklcr,  Quarterly Progress Report,   Solid-State and Molecular Theory Group,   M. I. T. 
July 15,   1952,   p.  62. 

3. Both M. Kotani and M. Siga,   Proc.  Phys.-Math. Soc. Japan 19.   471 (1937) and H. H. 
Voge,  J. Chem. Phys.  4,   581 (1936) treated CHi this way and recently T.  Itoh.  K. 
Ohno and M. Kotani,  J.HPhys. Soc. Japan 8_,   41 (1953) have done a similar treatment 
of the CH3 radical. 

4. J. C. Slater,  Technical Report No.  3,  Solid-State and Molecular Theory Group,  M. I. T., 
February 15,   1953. 

5. J.  E.  Lennard-Jones,   Proc. Roy. Soc.  (London) A198.   1.   14(1949). 

6. G.  Koster and H. C. Schweinler,  Quarterly Progress Report,  Solid-State and Molecular 
Theory Group,   M.I.T.,   January 15,   1953,   p.   11. 

H. Kaplan 
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13.   A STUDY OF 2Z    IN ATOMS 

The calculations of 2Z  .   the effective nuclear charge  fcr the potential in an atom,   have 
P (1) 

been completed. Using the method outlined in a previous Progress Report, x ' the total (nor- 

malized) radial vave function and 2Z have been obtained for those atoms treated by the Har- 

tree,  Hartree-Fock,  or Slater self-consistent field methods.     '   Table 13-1 lists the atoms 

for which 2Z    has been obtained in this way,  together with those atoms whose 2Z  's are avail- 
P J        " P 

able in the literature.    The Table gives a complete picture of all the available potentials in 

atoms. 

Table 13- 1 

Deg ree of Ionization 

Atomic 
Humber 0 + 1 + 2 + 3 

2 He* 

3 Li* 

4 Be* Be* 

5 B 

6 C C 
7 N 

8 O O o o 
9 F* 

10 Ne* 

11 Na* Na 

12 Mg 

13 Al* Al Al* 

14 Si* Si 

18 Ar* 

19     . K K* K* 

20 Ca* Ca Ca* 

24 Cr Cr++ 

26 Fe* 

29 Cu* 

30 Zn 

31 Ga Ga Ga 

32 Ge Ge 

33 As As As As 

34 Rb* 

37 Ag* 

+ 4 

Si 

• • 

t 

ii 
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Table 13-1 (con'd) 

n. 

Atomic 
Number 0 + 1 

55 Cs* 

74 W« 

80 Hg* 

+ 2 

Hg* 

+ 3 + 4 

Available in the literature. 

References 
1. Quarterly Progress Report,  Solid-State and Molecular Theory Group,   M.I. T.,  October 

15,   1952,   p.  26. 
2. H.  H.  Landolt and R. Bornstein,  Zahlenwerte und Funktionen aus Physik,  Chemie, 

Astronomie,  6 Auflage,  I. Band (Springer,  Berlin) 1950,  p.  27b,   gives a complete 
listing.  

A. J.  Freeman 

• 
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14.  ORBITAL EFFECT IN NEUTRON-ELECTRON MAGNETIC SC "OTTERING 

The spin-spin part (jfcc) of the neutron-electron magnetic interaction has been con- 

sidered in some detail in the literature,     ' while the spin-orbit part ( J*"CT).  associated with 

the interaction between the neutron magnetic moment and a moving electron,  has not.    It is 

worthwhile to consider both of these in detail from the viewpoint of exploiting th*> scattering 

of thermal neutrons from magnetic materials as a tool for investigating the electronic struc- 

ture of matter. 

The magnetic Hamiltonian is 

*SS * *SL •  - *n '  *(S>  " ?» '   ^ <15- » 

in which jT    = g_(m/M  )  p"?   is the neutron magnetic moment,  and the magnetic field at the 

neutron generated by electrons of the scatterer is given by 

5(S) =   £j  " VJ "  ft X (V*>] (15-i) 

where y.    •  - 2 (is. is the magnetic moment,   r. the position,  p. the momentum,  and s   the spin 
J J tn      J i J 

angular momentum (in units of h) of the j     electron,  the summation being over all electrons; 

T   is the position,   s"   the spin,  and g    =  - 3. 83 the g-facior of the neutron;  m/M^ is the elec- n r n °n ° p 
tron-proton mass ratio; (J  = en/2mc is the Bohr magnetron;  r   .  =    |r    - r.|.    These expres- 

sions for   Jfcc and  jfc.   were obtained by transcribing the nonrelativistic form of the Breit 

fine structure Hamiltonian^  ' for the electromagnetic interaction between two electrons to ap- 

ply to the Interaction between a neutron and an electron,  neglecting a term in the neutron mo- 

mentum p ,   smaller by a factor    ~m/M    than the electron momentum term in (15. 3).    Eq. 

(15.2),  when expanded,  includes besides.the usual dipolar energy a   6-function term necessary 

to obtain agreement with experiment.'   '   Both (15. 2) and (15. 3) may be derived in an ele- 

mentary way from classical electromagnetic theory. 

Consider the differential scattering cross section in center-of-mass coordinates in 

Born approximation for the scattering of a monochromatic beam of neutrons by a molecule or 

small crystal.   The Born approximation is expected to be valid here for scatterers of linear 

dimension: less than about 20A independent of neutron wavelength, but may well be valid for 

much larger scatterers.   The matrix elements of (15. 1) involved are between wave functions 

of the system neutron plus scatterer with no interaction.    When integration is carried out over 

the neutron space and spin coordinates,   and an average over initial neutron spin states is per- 

formed,  the differential cross section may be written 
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•w • (R =? J h k <tT- ^?J= [** - «*!A * n-^j] -1 • iq • 
(15.4) 

corresponding to an unpolarized incident beam.    In (15.4) we have used the abbreviation 

?ba =/+b^ba)+adT (l5'5) 

for matrix elements of the operators 

^(S)(K) =   I   exp[iK •  rjT. (15.6) 
J 

?(L)(£) =   £   exp [iK •  r ] K-2 K   x (p./h) (15.7) 

with resp«ct to wave functions 41 of the scatterer.    The subscripts a and b refer,   respectively, 
to initial and final states;  R is the ratio of the reduced mass to the proton mass;  k is the neu- 
tron wave vector,  K.      = k    - k.   = IC   e.   ; I is the unit dyadic;  k    and k.   are related by con- 
servation of energy. 

Eq.  (15.4),  or analogous expressions for cases in which the incident neutron beam is 
polarized and/or the scattered beam is analyzed,  should be useful for testing electronic wave 
functions of a magnetic scatterer,  especially in regions frequented by valence electrons.    As- 
suming that any bound-state electronic eigenfunction of the scatterer can be expressed as a 
linear combination of antisymmetrized products of orthonormal one-electron orbitals <> ,  e. g., 
molecular or crystal orbitals,  the electronic part of the matrix elements (15. 5) is expressible 
as a linear combination of one-electron matrix elements of the types 

(•Mexp[iK • r]l*) (»5.8) 

(•MexpfiK     r]*l*). (15.9) 

(4) The $'s are commonly approximated as a linear combination of orthonormal atomic orbitals*  ' 
u    (r) Ym(£, + )X       (a),  in which case (15. 5) is ultimately expressible as a linear combina- 
tion of matrix elements (15. 8) and (15. 9) in which the $ 's are atomic orbitals about the same 
center.   These can be evaluated quite generally except for radial integrals: 

(n'J'm'm^ |exp [iK •  rl *\ntm mg) » (m's |s| mg) j  un,|l(i
,m,|exp fiK •  r l|lm) u^ r2 dr . 

j 
i 
ll I 
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(ORBITAL EFFECT IN NEUTRON-ELECTRON MAGNETIC SCATTERING) 

(n'J'mW |exp[iK • "rlv|n*mmg)  = 6m,m     f° "„,,, x (I'm') exp TiK •   rl v-|tm) un|r
2dr, 

in which the angular matrix elements (Tm'lexp iK •   r   |im) and (I'm' |exp  iK •  r    V^m) in- 

volve linear combinations of spherical Bessel functions j  (Kr) with coefficients depending on 

the direction of K times 1,   l/r,  or 8/8r;  tables of these matrix elements for I',    I £1 will 

be published elsewhere. 

For free atomic scatterers,  closed shells yield no contribution to (15. 4) and,  if spin 

interactions are neglected in the atomic Hamiltonian,  neither do the cross-terms in (15.4). 
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15. ADSORBED SURFACE LAYERS ON SEMICONDUCTORS 

Investigations have been started on the behavior of adsorbed surface layers on semi- 

conductors.    The purpose of this investigation is to predict the energy spectrum which arises 

from the surface in connection with the adsorbed layers.    A discussion of that problem seems 

to be promising since from the interpret: 

picture of the surface has been obtained. 

to be promising since from the interpretation of new experimental material    ' a more detailed 
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16.  CONNECTION BETWEEN THE MANY-ELECTRON INTERACTION AND 
THE ONE-ELECTRON PERIODIC POTENTIAL PROBLEMS 

The extension of Tomonaga's*  ' collective coordinate model of a one-dimensional sys- 
tem of interacting electrons without spin (based on Bloch's classical approach in terms of 
"sound waves") to include the effect of an external periodic potential,  as proposed in the pre- 
vious Progress Report,   has been effected. 

Using the language of second quantization,  Tomonaga has expressed the Hamiltonian 
in terms of the Fourier components of the density,   which are shown to approximately satisfy 
the commutation relations characteristic of a Bose-Einstein or phonon field.    Since the Ham- 
iltonian is solely a bilinear function of these Fourier density components,   or collective co- 
ordinates,  it is th>en relatively simple to rotate the Hamiltonian into a diagonal form,  repre- 
senting a collection of uncoupled sound quanta or phonons, by a straightforward canonical trans- 
formation which Tomonaga exhibits.    To extend this rotation (in Hilbert space) to include the 
periodic potential term,  it is simply necessary to displace the origins of the rotated canonical 
set of (real) variables given by Tomonaga as follows: 

f r 
1(vn • v>Vf i 

P" n      Kl/4(Tn + 2Un)3H L    n n n        J 

+   f    <Vn * Vn»> V¥    1 
%       %       LTnl/4<Tn+2Un>3/4J 

where   N   is the number of electrons. 
n   is the index of the Fourier components,  which correspond to an arbitrary (large) 

unit of periodicity of length L. 
V    is the Fourier component of the external periodic potential V(many of the V    will 

n be zero if the period of V is comparable to the average interparticle distance rather 
than L). 

T    •     — (—)      (N - 1) inl is the Fourier component of the kinetic energy. n       12m   L   J 

U    »  |n| J ,  where J    is the Fourier component of the Coulomb potential (J    '"W/n ). 

The part of the final Hamiltonian representing the excited states of the system,  and 
thus yielding the dispersion relation,  is not affected by the above shift in origin,  and we shall 
not consider excited states further.   In the final ground state Hamiltonian we find the effect of 
the periodic potential to be represented by the term: 

TT       mi   IVJ2 

- 2, 
|n*< 

(T„ • 2UJ 
N-l 
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(MANY-ELECTRON INTERACTION AND ONE-ELECTRON PERIODIC POTENTIAL) 

The restriction on |n|,  or the size of the reciprocal vector,   is common to all terms,  and ex- 
presses the inherent limitation of the method to cases where sound quanta of smaller wave- 
length -- and hence events or forces of shorter range --do not occur and where excited holes 
and electrons are not further away than this maximum n in momentum space fr->m the level 
of the Fermi sea.    The derivative of this term with respect to N should give the one-electron 
energy due to the periodic potential of the highest electron in the Fermi sea:   no discontinuity 
is ob«»rved corresponding to an energy gap,  presumably because the complete description of 
the perturbation effect of the periodic potential requires the use of sound quanta of smaller 
wavelength than are allowed by this method. 

On the one-electron picture the effect of the periodic potential may be estimated from 
second order perturbation theory: 

v     |Vij|2 
AE  =     I        •   li      .    . 

iJi   p7 p7 
2m       2m 

Energy gaps are obtained by solving a degeneracy problem for |p.|     = |p.| , not by second 
order perturbation theory, but we note that the effects of the gap are equal and opposite on 
the energies of the electron just below and on that just above the gap.   Hence if we sum these 
AE for all the electrons in the Fermi sea,   we should obtain a correct expression for the total 
effect on energy of the periodic potential to check the one we have found by the Tomonaga 
method: 

IV   I 
AE(total lattice) =     Z       Z       0 ^—5- 

|i|*4   jVi Ei    "Ej 
.2 

|Vnl N-l/2      l 

ir-f 

Ink- 

I    : 

1    i 

or other forms depending on the size of n relative to N.   Expanding,  we at once check the ; 
form derived above if we note that U    = 0 in this one-electron approximation: 

2 N - 1 2 I   ! 
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(MANY-ELECTRON INTERACTION AND ONE-ELECTRON PERIODIC POTENTIAL) 

where the terms omitted in the sum,  plus the other errors,  are small if the conditions re- 
quired for the validity of Tomonaga's method are satisfied;  in particular,  if V    is small for 

N - 1 n larger than —-— (as well as zero for all n not multiples of the funds-    -.r" n   correspond- 
ing to the period of V,  in general different from L).    For comparison we may expand the Cou- 
lomb interaction energy expression for the ground state as given in Tomonaga; *  ' we obtain 
as the leading terms in U /T n     n 

IN
2
J+ »    I   |n|J-I    I   'LpL 

2 °      2 n^O n      4 n^O    Tn 

with |n|< 5L-j— as usual. 
Inasmuch as we pre in a Heisenberg,  or operator,  representation and cannot easily 

obtain the wave functions in the original coordinates,  it was decided to first investigate the 
effect of the periodic potential transformation on the correlation in position of the electrons. 
Extending the correlation expression given by Tomonaga to include the periodic potential ef- 
fect,  we find for the probability in the ground state of a certain electron being in a unit length 
at a distance ( from a certain other electron 

as an approximate form for U /T    << 1,  where I = L/N is the average interparticle distance. 
We observe that a factor of four differentiates the effect of the Coulomb interaction on the 
correlation due to the exclusion principle from the effect on the correlation due to the periodic 
potential.    However,  we must not attach too much importance to expansions in terms of U /T 
since the advantage of Tomonaga's method over perturbation theory is precisely that Un does 

N - 1 not have to be small for small n.    Further we must cut off the above sums at |n| • —-r— as 
usual;  but here this cutoff is arbitrary since even the closed form of C(t) (not given here) be- 
comes Indeterminate but large if the summation is extended indefinitely,  while in the summa- 
tion for the ground state (but not excited state) energy the tail of the summation is inherently 
small. 

For large L we may approximate the above sum accurately by an integral.    Let us 
consider the special case of a non-Interacting, free electron gas (Un 

= v
n 

s °)s w« "a** 
easily perform the integration to obtain: 

i f  rsm2<S£>   sin(i^"n 
•(j) "£) 

If for comparison we determine this Paul! Exclusion Principle correlation by direct integration 
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(MANY-ELECTRON INTERACTION AND ONE-ELECTRON PERIODIC POTENTIA! ) 

over the product of two determinants of exponential one-electron wave functions,  we f.r.d 

2, 

c,t,=H!-Ui-]} «-<i>2 

for this free-electron,  one-dimensional co»e,  following the approach of Wigner and Seitz. * ' 

Since spin is not included in our formulation,  this case corresponds to the parallel spin case 

in a real electron gas as far as the exclusion principle is concerned.    Clearly the two ex 

sions disagree. 

If we multiply C(t) by N we obtain the probability of any electron being in a unit length 

at a distance ( from the fixed one;  i.e.,  simply a density expression.    Clearly the first 

term in each of the above expressions then corresponds to the constant average density,  while 

the second term gives the "exchange charge density" in the language of Wigner and Seitz: 

NC(t)  = p     - p .    Although the general nature: of these exchange charge densities are simi- 
-1 lar,  the Tomonaga expression has an (i/i )      average behavior for the large (£/i ) where it 

is presumed most valid,  while the correct Wigner-Seitz expression has a (£/')~2 behavior. 

As (1,11) goes to zero,  the Tomonaga exchange charge density actually becomes negative, 

while the Wigner-Seitz zero value exactly cancels the constant p    as it should.    Finally,  if 

we integrate the Wigner-Seitz p    from * L "* t *>,   we find a total of one unit of exchange 

charge,  in conformity with the usual intepretation that p    represents the effect of the "fixed 

electron" not acting on "i*self" in this Fermi-Dirac gas.    However,  the total Tomonaga ex- 

change charge is zero,  each term in p    integrating to a magnitude of 1/2.    Until these dis- 

crepancies in the correlation expression in this special case are understood,  no further de- 

velopment of the Tomonaga picture will be undertaken. 
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